## STEEL

## MINE TIMBER




Heavy Installation of Steel Mine Timbers in the Mine of the
Monroe Coal Mining Company at Revioc, Pennaylyania

# STEEL MINE TIMBER 

TABLES AND DATA

ON THE

PROPERTIES AND USES

OF

MINE TIMBER SECTIONS

MANUFACTURED BY
CARNEGIE STEEL COMPANY PITTSBURGH, PA.

Copyright, 1924, by CARNEGIE STEEL COMPANY Pittsburgh, Pa.

Carnegie Steel Company is the pioneer in the United States in the application of steel to underground timbering of mines and has contributed to the success of such timbering by recommending suitable and practicable forms of construction.

So long ago as 1894 this Company worked out a type of framing suitable for use in the bituminous coal fields of Western Pennsylvania, resulting during the ten following years in a few installations chiefly in the anthracite region, but the real impetus to the systematic timbering of mines dates from 1907, when this Company placed on the market a series of steel sections designed with special reference to this work. The H-beam has made steel framing as simple as the wooden framing which it displaced.

The data and tables which follow reflect the practical experience gained from these years of observation in the design and installation of many miles of steel timber in rooms and headings. They constitute a clear and safe guide to what is best from the standpoint of the manufacturer and most economical to the user.

Should need for further information arise, this Company will be glad to co-operate in the solution of mine-timbering problems.

STEEL FOR SERVICE. Steel, as a substitute for wood, is of greatest economical value in the timbering of mines when permanency of construction is desired. Generally the use of steel will be preferred for the reason that wood is not, from a standpoint of economic design, applicable to all constructions in connection with mining operations and that, in many other cases, its use is attended by unavoidable losses from deterioration.

The ultimate cost of an installation depends upon the different conditions for which it is to be used, the relative cost of material and the life of the installation, and is determined by the primary cost or investment plus cost of maintenance and the compound interest on both; the greatest economy is attained when a material is used which does not deteriorate and does not require replacement during the entire period of service.

The cost of steel installation, while primarily in excess of wood, is ultimately compensated for to its fullest extent by the economies effected due to permanency and serviceableness of steel under all conditions of mining operations, as generally outlined in the following:

ECONOMY IN DESIGN. Steel sets can be designed to support any weight under any condition of loading with regard to an economical selection of steel sections; at the same time it can be designed to obtain the most advantageous proportions of lateral and vertical clearance, the latter being of particular importance in determining the headroom necessary for mining operations.

Wooden sets are uneconomical on account of loss and waste resulting from the use of excess material due to the common and convenient practice of framing three-piece gangway sets from timbers of the same size, as it is considered impracticable to use sizes adapted to the stresses they have to sustain.

Steel sets are easily erected on account of the simplicity of the design and, as sets are frequently furnished of same design, so that the corresponding parts of the set are interchangeable, no time or material is lost in assembling.

ECONOMY IN SAFETY. Steel sets may remain permanently in position and need be removed only when it is intended to abandon the workings. The renewal of wooden sets is frequently necessary during the operation of a mine due to decay or other deterioration and is dangerous on account of the roof which must be supported during the removal of the old sets, or else the loose rock in roof must be taken down before removing the set; steel supports, therefore, add to the safety in the operating of the mine.

ECONOMY IN FIRE RISK. The use of steel practically eliminates the constant danger from fire risks inseparable from the use of wooden constructions. The preservation of the mine from fire loss warrants the most careful consideration in determining the economic value of steel as compared with wood.

ECONOMY IN MAINTENANCE. Steel in mine construction requires only to be well painted to be protected against the influence of dampness and water; the steel is then practically indestructible and can at any time be withdrawn and re-used for similar purposes.

Wood deteriorates, and in many cases rapidly, on account of decay under the unfavorable conditions of uniform temperature and great humidity prevalent in most mines.

In addition to the direct economic losses due to necessary renewal of deteriorated wooden sets, further losses are occasioned by the failure to withdraw and re-use wooden timbering from completed rooms, abandoned headings, etc. This neglect, which is caused in part by the relative worthlessness of wood after service, results in the menace of vitiated air due to decay and in increased fire risk, both of which contribute to the expense of mine maintenance.

The use of steel avoids all these elements of economic waste; its long life under all conditions of service amply compensates for the increased first cost of its installation. Wood may appear convenient, but steel is the material for service. Long endurance and minimum cost of maintenance mean ultimate economies in expenditure.

RELATIVE COST OF STEEL AND WOOD. Variable conditions at mines make it difficult to compare the cost of steel and wood mine timbers except on the basis of specific instances. As a general rule, when consideration is given to depreciation and ultimate expenditure, the operator can well afford to pay for correctly designed steel sets three or four times the cost of wood sets of equivalent strength.

Comparisons should always be based on first cost, length of service, cost of renewal and maintenance and interest on total investment. Consideration should also be given to such apparently extraneous matters as ventilation, fire risk and interruption of operations when wooden timbers must be removed.

Recent statistics covering bituminous coal mines show a consumption for underground timbering of 1.5 to 12 board feet of lumber per ton of coal produced. A large number of coal mines use about 6.5 board feet at prices ranging from 2 cents to 5 cents per foot with an equal cost for handling it. The substitution of steel, wherever possible, in underground timbering in place of lumber will result in a considerable reduction in the cost per ton of coal mined.

PROPER DESIGN OF STEEL MINE TIMBER. The cost of a durable material may be much increased by improper methods in its preparation for final use. Details of framing should be simple and connections should be of minimum weight so that the cost of fabrication may be the least possible, consistent with good engineering practice. Above all, the kind of steel sections to be used should be chosen with a view to the character of the stresses so as to insure proper and most economical distribution of the loading. Needless expense has been incurred in many installations by reason of the use of improper steel sections, heavy connections and base plates, and complications in the details of fabrication.

Of the numerous designs and proposals considered over a period of several years, the four designs or styles which are shown in Figs. 1 to 4, represent those which are best suited for average conditions and combine simplicity of fabrication and erection and lowest first cost.


Fig. 1-Gangway Set, Style F


Fig. 2-Gangway Set, Style G
Representative Gangway Sets


Fig. 3-Gangway Set, Style K


Fig. 4-Gangway Set, Style L

Representative Gangway Sets

STRESSES IN MINE TIMBERS. In the use of steel for timbering, the safe guide is experience. The exact amount and exact direction of the pressures exerted by roof, walls and floor are in many cases indeterminate, and general principles only can be stated.

Where steel is to replace wood, the problem of the designer is merely to select from the tables steel sections equivalent in strength to the wooden timbers which are in use and then to work out connections and other details so as to insure minimum cost of fabrication. If experience indicates that the wood timbers are too light, and fail from over-strain rather than decay, the steel sections should be made somewhat heavier than required by the tables so as to cover that over-strain.

The strength of an assemblement is the strength of its weakest member. In a three-piece gangway set each leg seldom carries more than half the load on the collar and in most cases needs only to be proportioned thereto. Where this method of computation loads a leg to its full theoretical value, it is customary to use the next heavier section to provide against cross bending due to the wedging, weight of lagging and other indeterminate factors.

In new work it is safest to use somewhat heavier sections than required by the rules. Lighter sections may be put in later if found to be sufficient. The problem is to determine the probable load on the roof support or collar and the character and amount of the stresses in the legs, if a three-piece or four-piece set is to be used.

The tables of safe loads, etc., which follow are based on stresses customary in structural work and are believed to represent approved practice in mine timber construction. So far as the use of wooden timbers is concerned, the data should be adjusted to the character of the materials actually furnished, particularly in view of the fact that structural wooden timbers show a growing tendency toward inferiority in quality.


Fig. 5-Typical Rock Cleavage, Level Strata

1. Level Strata Timbering. Fig. 5 shows a condition of rock cleavage over gangway supports where the strata are horizontal and the rock is of uniform texture. In this case the cleavage is symmetrical and the load sustained by the collar is the cleavage prism, the height of which will be the half span length by the tangent of the angle at which the roof would break away naturally. The total weight sustained by the collar will be the product of the area of the triangle of fracture by the distance between supports and by the weight per cubic unit of the rock; $W=\frac{\mathrm{swl}^{2} \tan a}{4}$

Complete formulas for the computation of stresses for above and other conditions of loading are given on following pages.

```
Notation used in the formulas which follow is:
\(1=\) Distance center to center of supports, in inches.
s \(\quad\) Distance center to center of gangway sets, in inches.
\(\alpha, \beta=\) Angles of fracture in cleavage triangle.
c \(\quad=\) Distance to center of gravity of triangle, in inches.
w \(\quad=\) Weight, in pounds per unit of volume, etc.
W \(\quad=\) Superimposed load supported by beam, in pounds.
\(x \quad=\) Distance to any point of moments, in inches.
\(\mathrm{f} \quad=\) Bending stress, extreme fiber, in pounds per square inch.
\(\mathrm{E} \quad=\) Modulus of elasticity, in pounds per square inch.
I \(\quad=\) Moment of inertia, in inches \({ }^{4}\).
\(\mathrm{S} \quad=\) Section modulus, in inches \({ }^{3}\).
\(\mathrm{R}, \mathrm{R}_{1}=\) Reactions at points of support, in pounds.
\(\mathrm{M} \quad=\) Bending moment at point given, in inch pounds.
\(\mathrm{M} \max =\) Maximum bending moment, in inch pounds.
D \(\quad=\) Deflection at point given, in inches
```

The bending moment, deflection, etc., produced in the collar may be computed by the flexure formula for beams supporting a load increasing uniformly to the center: $\mathrm{W}=\frac{\mathrm{swl}^{2} \tan \alpha}{4}$


For above condition of loading the safe loads are equal to 0.75 of the uniformly distributed loads for corresponding spans in safe load tables for beams; the deflection of reduced load is 0.96 of that derived from coefficient in tables.

The load on each support is equal to one-half of total load.

If the apex of the cleavage prism is over a support, the maximum bending moment is the same as for a beam supporting a load increasing uniformly to one end:


For above condition of loading the safe loads are equal to 0.9743 of the uniformly distributed loads for corresponding spans in safe load tables of beams; the deflection of reduced load is 0.976 of that derived from coefficient in tables.

The loads on supports are one-third and two-thirds of total load.
If the apex of the cleavage prism is over the center of the beam, the maximum bending moment is the same as for a beam supporting a load increasing uniformly to the center. The values of M max. will, therefore, range within these two limits; that is, from .1287 Wl to .1667 Wl , but can be computed exactly from the formula given below:


Instead of the exact method of computation, the bending moment and the deflection may be computed as if for a load increasing uniformly from end to center.

The loads on the two supports are not equal and in their design the reaction at each end of the beam should be computed in accordance with the formula.


Fig. 6-Actual Rock Cleavage, Inclined Strata
2. Inclined Strata Timbering. The loads in mine timber work are rarely symmetrical and in consequence computations must necessarily take into consideration actual conditions, the character of the strata, method in which fracture takes place, danger from squeeze and other circumstances. The prime consideration is to prevent fracture beyond the lines of the necessary excavation. A soft roof can be safely held if timbered immediately upon exposure to the air. Delay means needless work.

Fig. 6 shows the more common condition where the strata are inclined, the cleavage is not symmetrical and the arch is irregular. In this case the apex of cleavage is nearer one end of the collar than the other. The load is computed, as in the case of symmetrical cleavage, from the weight of the cleavage prism and the stresses in accordance with the formulas given on preceding page for the above condition of loading.
3. Size of Legs and Collar. Bending moments should be computed in, or reduced to, inch pounds. When so computed the size of section to be used may be taken from the table of elements by dividing the bending moment by the safe working stress; the result is the section modulus of the required section.

The size of leg sections can be taken directly from the tables of safe loads, noting that values used must be those corresponding to the length of the leg. Allowance should be made for the effect of bending stresses in the leg due to the inclined character of the strata, when the resultant line of pressure at the supports is not parallel with legs, so that the total resistance required may be greater than the end reactions computed from formulas.

ROOF SUPPORTS. The simplest use of steel in underground mine timbering is that in which single I-beams or rails are used to span a roadway. Where the coal is good, solid and not liable to crush, the supports may be laid directly on the coal with or without bearing plates made of steel, wood or stone. Places of unusual weakness may be taken care of by props of wood or steel, of such lengths as conditions may require to obtain solid bearing.

The following table shows the relative values of rail sections as compared with I-beams and indicates the superiority of the latter for mine timbering purposes:

First, for equivalent strength, beams are much lighter.
Second, for equivalent strength, beams are much deeper; consequently the deflection is much less and their use is, therefore, in the interest of greater stability.

Third, the wider flanges of the beams offer much better support for lagging.

At normal prices, therefore, the substitution of rails for I-beam sections is uneconomical and should be considered only on the basis of very low prices.

RELATIVE VALUES OF STEEL RAILS AND BEAMS

| RAILS |  |  |  | BEAMS |  |  | EXCESS WEIGHT PER FOOT OF RAIIS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Depth, <br> Inches | Weight per Yard, Pounds | Weight per Foot, Pounds | Section Modulus, Inches ${ }^{\text {a }}$ | Depth, Inchea | Weight per Foot, Pounds | Section Modulus. Inches ${ }^{3}$ | Pounds | Per Cent. |
| 5 $8 / 4$ | 100 | 33.33 | 14.6 | 8 | 18.40 | 14.2 | 14.93 | 45 |
| 538 | 90 | 30.00 | 12.2 | 7 | 20.00 | 12.0 | 10.00 | 33 |
| 5910 | 85 | 28.33 | 11.1 | 7 | 17.50 | 11.1 | 10.83 | 38 |
| 5 | 80 | 26.67 | 10.1 | 7 | 15.30 | 10.4 | 11.37 | 43 |
| 41516 | 75 | 25.00 | 9.1 | 6 | 17.25 | 8.7 | 7.75 | 31 |
| 458 | 70 | 23.33 | 8.2 | 6 | 14.75 | 7.9 | 8.58 | 37 |
| 4516 | 65 | 21.67 | 7.4 | 6 | 12.50 | 7.3 | 9.17 | 42 |
| 41/4 | 60 | 20.00 | 6.6 | 5 | 14.75 | 6.0 | 5.25 | 26 |
| 41/6 | 55 | 18.33 | 5.8 | 5 | 12.25 | 5.4 | 6.08 | 33 |
| $3 \% / 8$ | 50 | 16.67 | 5.0 | 5 | 10.00 | 4.8 | 6.67 | 40 |
| $311 / 16$ | 45 | 15.00 | 4.3 | 5 | 10.00 | 4.8 | 5.00 | 33 |
| $31 / 2$ | 40 | 13.33 | 3.6 | 4 | 10.50 | 3.5 | 2.83 | 21 |
| $35 / 16$ | 35 | 11.67 | 3.0 | 4 | 7.70 | 3.0 | 3.97 | 34 |
| $31 / 6$ | 30 | 10.00 | 2.5 | 4 | 7.70 | 3.0 | 2.30 | 23 |
| 234 | 25 | 8.33 | 1.8 | 3 | 5.70 | 1.7 | 2.63 | 32 |
| 298 | 20 | 6.67 | 1.4 | 3 | 5.70 | 1.7 | 0.97 | 15 |

GANGWAY SETS. As already noted, many different types of construction have been devised for three-piece gangway sets. Practical experience indicates that Style F, Fig. 1, combines that simplicity of arrangement, economical distribution of material and ease of fabrication and erection which makes it the preferable style for all ordinary use.

The reason for this is that, while the I-beam is the most economical section in resistance to cross bending stresses, the H-beam is the most economical in resistance to compressive stresses. The use of the two sections, therefore, combines the resistance to bending of the one with the resistance to compression of the other. In addition the shape of the sections makes framing details simple, and, therefore, in the Style F set is contained the closest practical equivalent to the three-piece wooden set in general use previous to the introduction of steel.


Plain Plate Any Style Legs


Fabricated Plate H-Beam Legs


Fabricated Plate H-Beam Legs

Fig. 7-Base Plate Details
Where the loads are light and the leg sections quite small, there is hardly sufficient room in the leg for web connection angles. In such cases the Style F set is modified as shown in Fig. 3, Style K.

The base plates may be plain or fabricated, and may have upstanding angles, as shown in Fig. 7, the general arrangement of which is illustrated in Style L, Fig. 4. Modifications of this character do not affect the essential features of the Style F set and have relatively little influence on the cost. Their use is determined solely by the preference of the purchaser.

The Style F gangway set may be further modified by the use of bars, to prevent lateral motion, in place of the angle lugs as shown in Style G, Fig. 2.

Many kinds of lagging have been in use, such as wooden poles, boards, old rails, thin concrete slabs, tees supporting common bricks, steel plates and corrugated sheets.

PUMP HOUSES AND STABLES. Next to the gangway support the first use of structural shapes in the United States within the mines seems to have been made at the pump house of the Hazelton Shaft Colliery, No. 40 Slope, Lehigh Valley Coal Company, and a number of installations bear witness to the satisfaction which arises from the use of steel in such cases. Very extensive installations of steel have also been made in the way of underground stables, mine locomotive rooms, etc.

ERECTION METHODS. Inasmuch as steel mine timbers are fabricated complete in the shop, they are ready for erection when they reach the mine, and no further cutting or fitting is necessary. Erection, therefore, is quite simple and the only tools needed are wrenches, drift pins and hammers. The usual method of erection is to assemble the three pieces complete on the floor, bolt the connections together and raise the set into position.

Inasmuch as steel sets are only about one-third as heavy as wooden sets of equivalent strength, their erection not only requires less time, but also less physical effort. Their lightness is, therefore, a distinct advantage to be considered in estimating the relative cost of steel and wood.

Stiffiness is as important as strength and the spacing of timbering should be such as to compel the different sets to act together as a unit under any sudden stress or shock. Light sections with close spacing are, therefore, preferable to heavy sections on wide spacing. The roof itself tends to distribute the load over two or more sets, whereas on wide spacing there is much more danger of the roof falling in between the sets. The closer spacing also permits the use of much lighter lagging.

PRESERVATION OF STEEL MINE TIMBERS. The economical use of steel within the mines requires the same care for its preservation as its use above ground. At the same time conditions underground are not nearly so severe as above ground; the steel is not exposed to alternations of high and low temperatures, strong light, dryness and wetness, which are especially accelerative in the deterioration of protective coatings. Early objections to the use of steel due to the presence in some mines of acid-laden waters have not stood the test of experience, which indicates that only the simplest means are necessary for the guarantee of an extremely long life for steel timbering.

To insure such long life and, therefore, the utmost economy in ultimate expenditure, the base plates should be set in the dry. Where they come on edges of ditches, it may be desirable to set them on low concrete piers.

All steel within the mines should be well painted and kept painted. The pigments should be good and applied with care. Carbon paints in whose manufacture sulphuric acid has been used, and oxides of iron manufactured by chemical processes or recovered as a by-product of metallurgical processes are to be avoided. A metallic paint should be used for the first or shop coat by reason of its adhesive qualities. The second coat should be a moisture excluder. For the first coat, therefore, red leads, natural iron oxides or pigments with zinc base should be employed. Natural carbons, such as graphite, and hydro-carbons, such as asphalt, gilsonite and ozokerite, may be recommended for second coat work if properly ground and mixed with a good vehicle.

For the best service it is recommended that the steel be painted at the shop with a mixture of red lead, oil and asbestine, in the proportions of 15 pounds of red lead and 2 pounds of asbestine to a gallon of pure raw linseed oil, with sufficient japan dryer to work well; and that a first class graphite paint be applied thoroughly as a field or second coat to protect the shop coat and to fill up any vacancies or voids therein.

Repainting within the mines should be done on clean surfaces absolutely free from all rust, paint skins, dirt, etc. It is not sufficient to apply a new coat of paint over an old paint surface under which traces of corrosion already appear. The new paint will cover the old surface and may adhere firmly thereto, but the corrosion goes on underneath just the same. Attention to these small details will insure a high degree of durability.

## WORKING STRESSES IN STEEL

## Beams

Structural parts used as beams are so proportioned that the sum of the dead and live loads will not exceed the following unit stresses, given in pounds per square inch.
Bending Stress, extreme fiber of section 16,000
Compressive Stress, direct, gross section
16,000
Tensile Stress, net section
Shearing Stress (average), gross web section 10,000
Modulus of Elasticity 29,000,000

The safe loads given in tables are for uniformly distributed quiescent loads, and include the weight of the beam. The loads are assumed to act in a plane coincident with the center line of the web and to produce a deflection in this plane only. For beams which are not secured against lateral deflection, the tabular safe loads should be reduced in accordance with the ratio of the unbraced length of beam and its flange width, given in the following table:

Up to 10 x Flange Width: Full Tabular Load

| Unbraced Length | Tabular Safe Load | Unbraced Length | Tabular Safe Load | Unbraced Length | Tabular Safe Load |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $15 \times$ Flange | $90.6 \%$ | $25 \times$ Flange | $71.9 \%$ | $35 \times$ Flange | $53.1 \%$ |
| $20 \times$ - | 81.2\% | $30 \times \quad$ " | $62.5 \%$ | $40 \times \quad$ - | $43.8 \%$ |

To obtain the vertical deflection in inches, in center of span, for the full tabular load of beam, divide the corresponding coefficient of deflection by the depth of the beam, in inches, Loads in small figures below dotted lines produce deflections which exceed $1 / 880$ of the span.

The small figures above upper horizontal lines are the safe loads for shear based upon the gross area of the web, at 10000 pounds per square inch.

For beams loaded in the center of the span, use one-half the tabular safe loads and four-fifths of the corresponding coefficients of deflection.

## Columns

Structural parts used as columns are so proportioned that the sum of the dead and live loads will not exceed the following unit stresses given in pounds per square inch.

Primary Members-Unsupported Length, 1, not to exceed 120 times the least radius of gyration:

19000-100 1/r......................maximum 13000
Secondary Members-Unsupported length, 1 , not to exceed 200 times the least radius of gyration:

$$
13000-501 / \mathrm{r} \ldots \ldots \ldots . . . . . . . . . \text { minimum } 6000
$$

The safe loads given in tables are for direct loads equally distributed over the cross section of column or balanced on opposite sides.

|  | E |  |  | RUCT | TURAL | BEA | MS | $1$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Section Index |  | $\begin{gathered} \text { Weight } \\ \text { per } \\ \text { Foot } \end{gathered}$ | Area of Section | Width <br> Flange | Thickness of Web | Axis 1-1 |  |  | Axis 2-2 |  |  |
|  |  |  |  |  |  | I | r | 8 | I | r | S |
|  | In. | Lbs. | In. 2 | In. | In. | In. ${ }^{4}$ | In. | In. ${ }^{3}$ | In. 4 | In. | In. ${ }^{3}$ |
| B 18 | 24 | 105.9 | 30.98 | 7.875 | 0.625 | 2811.5 | 9.53 | 234.3 | 78.9 | 1.60 | 20.0 |
| B 1 |  | 79.9 | 23.33 | 7.000 | 0.500 | 2087.2 | 9.46 | 173.9 | 42.9 | 1.36 | 12.2 |
| B 2 | 20 | 81.4 | 23.74 | 7.000 | 0.600 | 1466.3 | 7.86 | 146.6 | 45.8 | 1.39 | 13.1 |
| B 3 | 20 | 65.4 | 19.08 | 6.250 | 0500 | 1169.5 | 7.83 | 116.9 | 27.9 | 1.21 | 8.9 |
| B 19 |  | 75.6 | 22.04 | 7.000 | 0.560 | 1141.8 | 7.20 | 126.9 | 46.3 | 1.45 | 13.2 |
| B 4 | 18 | 54.7 | 15.94 | 6.000 | 0.460 | 795.5 | 7.07 | 88.4 | 21.2 | 1.15 | 7.1 |
| B 6 | 15 | 60.8 | 17.68 | 6.000 | 0.590 | 609.0 | 5.87 | 81.2 | 26.0 | 1.21 | 8.7 |
| B 7 | 15 | 42.9 | 12.49 | 5.500 | 0.410 | 441.8 | 5.95 | 58.9 | 14.6 | 1.08 | 5.3 |
| B 8 | 12 | 40.8 | 11.84 | 5.250 | 0.460 | 268.9 | 4.77 | 44.8 | 13.8 | 1.08 | 5.3 |
| B 9 | 12 | 31.8 | 9.26 | 5.000 | 0.350 | 215.8 | 4.83 | 36.0 | 9.5 | 1.01 | 3.8 |
| B 10 | 10 | 25.4 | 7.38 | 4.660 | 0.310 | 122.1 | 4.07 | 24.4 | 6.9 | 0.97 | 3.0 |
| B 11 | 9 | 21.8 | 6.32 | 4.330 | 0.290 | 84.9 | 3.67 | 18.9 | 5.2 | 0.90 | 2.4 |
| B 12 | 8 | 18.4 | 5.34 | 4.000 | 0.270 | 56.9 | 3.26 | 14.2 | 3.8 | 0.84 | 1.9 |
| B 13 | 7 | 15.3 | 4.43 | 3.660 | 0.250 | 36.2 | 2.86 | 10.4 | 2.7 | 0.78 | 1.5 |
| B 14 | 6 | 12.5 | 3.61 | 3.330 | 0.230 | 21.8 | 2.46 | 7.3 | 1.8 | 0.72 | 1.1 |
| B 15 | 5 | 10.0 | 2.87 | 3.000 | 0.210 | 12.1 | 2.05 | 4.8 | 1.2 | 0.65 | 0.82 |
| B 16 | 4 | 7.7 | 2.21 | 2.660 | 0.190 | 6.0 | 1.64 | 3.0 | 0.77 | 0.59 | 0.58 |
| B 17 | 3 | 5.7 | 1.64 | 2.330 | 0.170 | 2.5 | 1.23 | 1.7 | 0.46 | 0.53 | 0.40 |
| H-BEAMS |  |  |  |  |  |  |  |  |  |  |  |
| Section Index | Depth of Beam | Weight per Foot |  | Width of Flange | Thickness of Web | Axis 1-1 |  |  | Axis 2-2 |  |  |
|  |  |  |  |  |  | I | r | S | I | r | S |
|  | In. | Lbs. | In. ${ }^{2}$ | In. | In. | In. ${ }^{4}$ | In. | In. 8 | In. ${ }^{4}$ | In. | In ${ }^{3}$ |
| H 4 | 8 | $\begin{aligned} & 37.7 \\ & 34.3 \\ & 32.6 \end{aligned}$ | $\begin{array}{r} 11.00 \\ 10.00 \\ 9.50 \end{array}$ | $\begin{aligned} & 8.125 \\ & 8.000 \\ & 7.020 \end{aligned}$ | $\begin{aligned} & 0.500 \\ & 0.375 \\ & 0.313 \end{aligned}$ | $\begin{aligned} & 120.8 \\ & 115.5 \\ & 112.8 \end{aligned}$ | $\begin{aligned} & 3.31 \\ & 3.40 \\ & 3.45 \end{aligned}$ | $\begin{aligned} & 30.2 \\ & 28.9 \\ & 28.2 \end{aligned}$ | $\begin{aligned} & 36.9 \\ & 35.1 \\ & 34.2 \end{aligned}$ | $\begin{aligned} & 1.83 \\ & 1.87 \\ & 1.90 \end{aligned}$ | $\begin{aligned} & 9.1 \\ & 8.8 \\ & 8.6 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |
| H 3 | 6 | $\begin{aligned} & 26.7 \\ & 24.1 \\ & 22.8 \end{aligned}$ | $\begin{aligned} & 7.76 \\ & 7.01 \\ & 6.63 \end{aligned}$ | $\begin{aligned} & 6.125 \\ & 6.000 \\ & 5.938 \end{aligned}$ | $\begin{aligned} & 0.438 \\ & 0.313 \\ & 0.250 \end{aligned}$ | $\begin{aligned} & 47.4 \\ & 45.1 \\ & 44.0 \end{aligned}$ | $\begin{aligned} & 2.47 \\ & 2.54 \\ & 2.58 \end{aligned}$ | $\begin{aligned} & 15.8 \\ & 15.0 \\ & 14.7 \end{aligned}$ | $\begin{aligned} & 15.7 \\ & 14.7 \\ & 14.2 \end{aligned}$ | 1.42 | $\begin{aligned} & 5.1 \\ & 4.9 \\ & 4.8 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  | 1.45 1.46 |  |
| H 2 | 5 | 18.9 | 5.47 | 5.000 | 0.313 | 23.8 | 2.08 | 9.5 | 7.8 | 1.20 | $\begin{aligned} & 3.1 \\ & 1.8 \end{aligned}$ |
| H 1 | 4 | 13.8 | 3.99 | 4.000 | 0.313 | 10.7 | 1.64 | 5.3 | 3.6 | 0.95 |  |

CARNEGIE STEEL COMPANY

## STEEL BEAMS

Allowable Uniform Loads in Thousands of Pounds
Maximum Bending Stress, 16,000 Pounds per Square Inch

| $\begin{gathered} \text { Span } \\ \text { in } \\ \text { Feet } \end{gathered}$ | 1-Beams |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 24 In. |  | 20 In. |  | 18 In . |  | 15 In. |  | 12 In. |  | $\left\lvert\, \begin{gathered} 10 \mathrm{In} . \\ \hline 25.4 \\ \mathrm{Ib} . \end{gathered}\right.$ | $\frac{9 \mathrm{In} .}{21.8} \begin{aligned} & \mathrm{lb} . \end{aligned}$ |  |
|  | $\begin{gathered} 105.9 \\ \mathrm{lb} . \end{gathered}$ | $\begin{gathered} 79.9 \\ \mathrm{lb} . \end{gathered}$ | $81.4$ | $\begin{gathered} 65,4 \\ \mathrm{lb} . \end{gathered}$ | $\begin{aligned} & 75.6 \\ & \mathrm{lb.} \end{aligned}$ | $\begin{gathered} 54.7 \\ \mathrm{lb} . \end{gathered}$ | $\begin{aligned} & 60.8 \\ & \mathrm{lb} . \end{aligned}$ | $\begin{gathered} 42.9 \\ \mathrm{lb} . \end{gathered}$ | $\begin{gathered} 40.8 \\ \mathrm{lb} . \end{gathered}$ | $\begin{gathered} 31.8 \\ 1 \mathrm{~b} . \end{gathered}$ |  |  |  |
| 4 |  |  |  |  |  |  | 177.0 |  | 110.4 | 84.0 | 62.0 | $\frac{82.2}{50.3}$ | 0.27 |
| 5 |  |  |  |  |  |  | 173.2 |  | 95.6 | 76.7 | 52.1 | 40.3 | 0.41 |
| 6 |  |  | 340.0 | 200.0 | 201.6 | $\frac{165.6}{157.1}$ | 144.4 | $\frac{120.0}{104.7}$ | 79.7 | 63.9 | 43.4 | 33.6 | 0.60 |
| 7 |  | 240,0 | 223.4 | 178.2 | 193.3 | 134.7 | 123.7 | 89.7 | 68.3 | 54.8 | 37.2 | 28.8 | 0.81 |
| 8 | 300.0 | 231.9 | 195.5 | 155.9 | 169.2 | 117.9 | 108.3 | 78.5 | 59.8 | 48.0 | 32.6 | 25.2 | 1.06 |
| 9 | 277.7 | 206.1 | 173.8 | 138.6 | 150.4 | 104.8 | 96.2 | 69.8 | 53.1 | 42.6 | 28.9 | 22.4 | 1.34 |
| 10 | 249.9 | 185.5 | 156.4 | 124.7 | 135.3 | 94.3 | 86.6 | 62.8 | 47.8 | 38.4 | 26.0 | 20.1 | 1.66 |
| 11 | 227.2 | 168.7 | 142.2 | 113.4 | 123.0 | 85.7 | 78.7 | 57.1 | 43.5 | 34.9 | 23.7 | 18.3 | 2.00 |
| 12 | 208.3 | 154.6 | 130.3 | 104.0 | 112.8 | 78.6 | 72.2 | 52.4 | 39.8 | 32.0 | 21.7 | 16.8 | 2.38 |
| 13 | 192.2 | 142.7 | 120.3 | 96.0 | 104.1 | 72.5 | 66.6 | 48.3 | 36.8 | 29.5 | 20.0 | 15.5 | 2.80 |
| 14 | 178.5 | 132.5 | 111.7 | 89.1 | 96.7 | 67.3 | 61.9 | 44.9 | 34.2 | 27.4 | 18.6 | 14.4 | 3.24 |
| 15 | 166.6 | 123.7 | 104.3 | 83.2 | 90.2 | 62.9 | 57.7 | 41.9 | 31.9 | 25.6 | 17.4 | 13.4 | 3.72 |
| 16 | 156.2 | 116.0 | 97.8 | 78.0 | 84.6 | 58.9 | 54.1 | 39.3 | 29.9 | 24.0 | 16.3 | 12.6 | 4.24 |
| 17 | 147.0 | 109.1 | 92.0 | 73.4 | 79.6 | 55.5 | 50.9 | 37.0 | 28.1 | 22.6 | 15.3 | 11.8 | 4.78 |
| 18 | 138.8 | 103.1 | 86.9 | 69.3 | 75.2 | 52.4 | 48.1 | 34.9 | 26.6 | 21.3 | 14.5 | 11.2 | 5.36 |
| 19 | 131.5 | 97.6 | 82.3 | 65.7 | 71.2 | 49.6 | 45.6 | 33.1 | 25.2 | 20.2 | 13.7 | 10.6 | 5.98 |
| 20 | 125.0 | 92.8 | 78.2 | 62.4 | 67.7 | 47.1 | 43.3 | 31.4 | 23.9 | 19.2 | 13.0 | 10.1 | 6.62 |
|  | 119.0 | 88.3 | 74.5 | 59.4 | 64.4 | 44.9 | 41.2 | 29.9 | 22.8 | 18.3 | 12.4 |  | 7.30 |
| 22 | 113.6 | 84.3 | 71.1 | 56.7 | 61.5 | 42.9 | 39.4 | 28.6 | 21.7 | 17.4 | 12.8 |  | 8.01 |
| 23 | 108.7 | 80.7 | 68.0 | 54.2 | 58.8 | 41.0 | 37.7 | 27.3 | 20.8 | 16.7 |  |  | 8.76 |
| 24 | 104.1 | 77.3 | 65.2 | 52.0 | 56.4 | 39.3 | 36.1 | 26.2 | 19.9 | 16.0 |  |  | 9.53 |
| 25 | 100.0 | 74.2 | 62.6 | 49.9 | 54.1 | 37.7 | 34.6 | 25.1 | 19.1 | 15.3 |  |  | 10.35 |
| 26 | 96.1 | 71.4 | 60.2 | 48.0 | 52.0 | 36.3 | 33.3 |  | 18.4 | 14.6 |  |  |  |
| 27 | 92.6 | 68.7 | 57.9 | 46.2 | 50.1 | 34.9 | 32.1 | 23.3 |  |  |  |  | 12.07 |
| 28 | 89.2 | 66.3 | 55.9 | 44.6 | 48.3 | 33.7 | 30.9 | 22.4 |  |  |  |  | 12.98 |
| 29 | 86.2 | 64.0 | 53.9 | 43.0 | 46.7 | 32.5 | 29.9 | 21.7 |  |  |  |  | 13.92 |
| 30 | 83.3 | 61.8 | 52.1 | 41.6 | 45.1 | 31.4 | 28.9 | 20.9 |  |  |  |  | 14.90 |
| 31 | 80.6 | 59.8 | 50.5 | 40.2 | 43.7 | 30.4 | 27.9 |  |  |  |  |  |  |
| 32 | 78.1 | 58.0 | 48.9 | 39.0 | 42.3 | 29.5 | 27.1 | 19.6 |  |  |  |  | 16.95 18.03 |
| 33 | 75.7 | 56.2 | 47.4 | 37.8 | 41.0 | 28.6 |  |  |  |  |  |  | $18.03$ |
| 34 | 73.5 | 54.6 | 46.0 | 36.7 | 39.8 | 27.7 |  |  |  |  |  |  | $\begin{aligned} & 19.13 \\ & 20.28 \end{aligned}$ |
| 35 | 71.4 | 53.0 | 44.7 | 35.6 | 38.7 | 26.9 |  |  |  |  |  |  |  |
| 36 | 69.4 | 51.5 | 43.4 | 34.7 | 37.6 | 26.2 |  |  |  |  |  |  | 21.45 |
| 37 | 67.5 | 50.1 | 42.3 | 33.7 | 36.6 | 25.5 |  |  |  |  |  |  | 22.66 |
| 38 | 65.8 | 48.8 | 41.2 | 32.8 | 35.6 | 248 |  |  |  |  |  |  | 23.90 |
| 39 40 | 64.1 62.5 | 47.6 | 40.1 39.1 | 32.0 31.2 |  |  |  |  |  |  |  |  | $\begin{aligned} & 25.18 \\ & 26.48 \end{aligned}$ |
| 40 |  | 46.4 | 39.1 | 31.2 |  |  |  |  |  |  |  |  |  |
| 41 | 61.0 | 45.3 | 38.1 | 30.4 |  |  |  |  |  |  |  |  | 27.82 29.20 |
| 42 | 59.5 | 44.2 | 37.2 | 29.7 |  |  |  |  |  |  |  |  | 29.20 30.60 |
| 43 | 58.1 56.8 | 43.1 42.2 |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & 30.60 \\ & 32.04 \end{aligned}$ |
| 45 | 55.5 | 41.2 |  |  |  |  |  |  |  |  |  |  |  |
| 46 | 54.3 | 40.3 |  |  |  |  |  |  |  |  |  |  | 35.02 |
| 47 | 53.2 | 39.5 |  |  |  |  |  |  |  |  |  |  | 36.56 |
| 48 | 52.1 | 38.7 |  |  |  |  |  |  |  |  |  |  | 38.14 |
| 49 | 31.0 | 37.9 |  |  |  |  |  |  |  |  |  |  | $39.74$ |
| 50 | 50.0 | 37.1 |  |  |  |  |  |  |  |  |  |  | $41.38$ |

In the tables of beam safe loads on this and the following page, note that:
Loads above upper horizontal lines produce maximum shear in webs.
Loads below lower horizontal lines produce deflections exceeding $1 / 860$ of span.

## STEEL BEAMS

Allowable Uniform Loads in Thousands of Pounds
Maximum Bending Stress, 16,000 Pounds per Square Inch

| $\begin{gathered} \text { Span } \\ \text { in } \\ \text { Feet } \end{gathered}$ | I-Beams |  |  |  |  | H-Beams |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8 in. | 7 in. | 6 in. | 5 in. | 4 in. | 8 in . |  |  | 6 in . |  |  | $5 \text { in. }$ | $4 \mathrm{in} .$ |  |
|  | $\begin{gathered} 18.4 \\ \mathrm{Ib} . \end{gathered}$ | $\begin{gathered} 15.3 \\ \text { lb. } \end{gathered}$ | $\begin{aligned} & 12.5 \\ & \mathrm{lb} . \end{aligned}$ | $\begin{aligned} & 10.0 \\ & \mathrm{lb} . \end{aligned}$ | $\begin{aligned} & 7.7 \\ & \text { ib. } \end{aligned}$ | $\begin{aligned} & 37.7 \\ & \mathrm{lb} . \end{aligned}$ | $\begin{gathered} 34.3 \\ \mathrm{lb} . \end{gathered}$ | $\begin{gathered} 32.6 \\ \mathrm{lb} . \end{gathered}$ | $26.7$ | $\begin{aligned} & 24.1 \\ & \mathrm{lb} . \end{aligned}$ | $\begin{aligned} & 22.8 \\ & \mathrm{lb} . \end{aligned}$ | $\begin{aligned} & 18.9 \\ & \mathrm{lb} . \end{aligned}$ | $\begin{aligned} & 13.8 \\ & \text { Ib. } \end{aligned}$ |  |
| 3 | 43.2 | 35.0 | $\frac{27.6}{25.8}$ | $\frac{21.0}{17.2}$ | $\frac{15.2}{10.6}$ |  |  |  | 32.5 |  |  | 31.3 | $\frac{25.0}{19.0}$ | 0.15 |
| 4 | $\overline{37.9}$ | 27.6 | 19.4 | 12.9 | 8.0 | 80.0 |  |  | 42.1 |  |  | 25.4 | 14.3 | 0.27 |
| 5 | 30.3 | 22.1 | 15.5 | 10.3 | 6.4 | 64.4 | 30.0 |  | 33.7 | 32.1 | 30.0 | 20.3 | 11.4 | 0.41 |
| 6 | 25.3 | 18.4 | 12.9 | 8.6 | 5.3 | 53.7 | 51.4 | 50.0 | 28.1 | 26.7 | 26.1 | 16.9 | 9.5 | 0.60 |
| 7 | 21.7 | 15.8 | 11.1 | 7.4 | 4.5 | 46.0 | 44.0 | 43.0 | 24.1 | 22.9 | 22.3 | 14.5 | 8.1 | 0.81 |
| 8 | 19.0 | 13.8 | 9.7 | 6.4 | 4.0 | 40.3 | 38.5 | 37.6 | 21.1 | 20.1 | 19.6 | 12.7 | 7.1 | 1.06 |
| 9 | 16.9 | 12.3 | 8.6 | 5.7 | 3.5 | 35.8 | 34.2 | 33.4 | 18.7 | 17.8 | 17.4 | 11.3 | 6.3 | 1.34 |
| 10 | 15.2 | 11.0 | 7.7 | 5.2 | 3.2 | 32.2 | 30.8 | 30.1 | 16.8 | 16.0 | 15.6 | 10.1 | 5.7 | 1.66 |
| 11 | 13.8 | 10.0 | 7.0 | 4.7 |  | 29.3 | 28.0 | 27.3 | 15.3 | 14.6 | 14.2 | 9.2 |  | 2.00 |
| 12 | 12.6 | 9.2 | 6.5 | 4.3 |  | 26.8 | 25.7 | 25.1 | 14.0 | 13.4 | 13.0 | 8.5 |  | 2.38 |
| 13 | 11.7 | 8.5 | 6.0 |  |  | 24.8 | 23.7 | 23.1 | 13,0 |  |  |  |  | 2.80 |
| 14 | 10.8 | 7.9 | 5.5 |  |  | 23.0 | 22.0 | 21.5 | 12.0 | 11.5 | 11.2 |  |  | 3.24 |
| 15 | 10.1 | 7.4 |  |  |  | 21.5 | 20.5 | 20.1 |  |  |  |  |  | 3.72 |
| 16 | 9.5 | 0.9 |  |  |  | 20.1 | 19.3 | 18.8 |  |  |  |  |  | 4.24 |
| 17 18 | 8.9 8.4 |  |  |  |  | 18.9 17.9 | 18.1 17.1 | 17.7 16.7 |  |  |  |  |  | 4.78 5.36 |

## Examples for Use of Beam Safe Load Tables

## Size and Vertical Deflection of Beams Laterally Braced

1. Load 33000 pounds, uniformly distributed over a span of 19 feet. Nearest safe load is that of a 15 inch, 42.9 lb . beam, viz.: 33100 pounds. Deflection for this load and span from coefficient: $5.98 \div 15=0.40$ inch.
2. Load 12500 pounds, concentrated in center of span of 15 feet. Equivalent uniformly distributed load is $2 \times 12500=25000$ pounds. Nearest safe load is that of a 12 inch, 31.8 lb . beam, viz. : 25600 pounds. Deflection $=4 / 5$ of deflection for 25000 pounds $=1 / 5 \times 3.72 \div 12=0.25$ inch.

Safe Load and Vertical Deflection of Beams not Laterally Braced
3. 18 inch, 54.7 lb . beam, uniform load, span 15 feet $=62900$ pounds.

Ratio: length of span $\div$ flangewidth $=15 \times 12 \div 6.0=30$.
Reduced uniform load $=62900 \times 62.5 \%=39300$ pounds.
Deflection for reduced load $=3.72 \div 18 \times 62.5 \%=0.13$ inch.

## Safe Load and Vertical Deflection of Beams for other Fiber Stresses

4. 8 inch, $32.6 \mathrm{lb} . \mathrm{H}$-Beam, span 13 feet, fiber stress 18000 pounds. Ratio of fiber stress $18000 \div 16000=9 / 8$.
Tabular load $=23100$; load for increased stress; $23100 \times 9 / 8=26000$ pounds.
Deflection for increased load $=2.80 \div 8 \times \%=0.39$ inch.

## CARNEGIE STEEL COMPANY



## STEEL BEAM COLUMNS

## Safe Load in Thousands of Pounds

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see in accordance with formulas:
$19,000-1001 / \mathrm{r}$, up to $1 / \mathrm{r}=120$. $13,000-501 / \mathrm{r}$, up to $\mathrm{l} / \mathrm{r}=200$
Weights do not include details.

| Effective Length in Feet | I-Beams |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 24 in. |  | 20 in . |  | 18 in. |  | 15 in. |  | 12 in. |  | 10 in . | 9 in . |
|  | $\begin{gathered} 105.9 \\ \mathrm{lb} . \end{gathered}$ | $79.9$ $\mathrm{lb} \text {. }$ | $\begin{aligned} & 81.4 \\ & \text { lb. } \end{aligned}$ | $65.4$ lb. | $\begin{aligned} & 75.6 \\ & \text { lb. } \end{aligned}$ | $\begin{gathered} 54.7 \\ \mathrm{lb} . \end{gathered}$ | $\begin{aligned} & 60.8 \\ & \text { lb. } \end{aligned}$ | $\begin{gathered} 42.9 \\ \mathrm{lb} . \end{gathered}$ | $\begin{aligned} & 40.8 \\ & \text { lb. } \end{aligned}$ | $\begin{aligned} & 31.8 \\ & \mathrm{lb} . \end{aligned}$ | $\begin{aligned} & 25.4 \\ & \text { 1b. } \end{aligned}$ | $\begin{array}{\|c} \hline 21.8 \\ 1 \mathrm{~b} . \end{array}$ |


| 3 | 402.7 | 303.2 | 308.5 | 248.0 | 286.5 | 207.1 | 229.7 | 162.3 | 153.9 | 120.3 | 95.9 | 82.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 402.7 | 303.2 | 308.5 | 248.0 | 286.5 | 207.1 | 229.7 | 162.3 | 153.9 | 120.3 | 95,9 | $\frac{82.1}{18.0}$ |
| 5 | 402.7 | 303.2 | 308.5 | 248.0 | 286.5 | 207.1 | 229.7 | 162.3 | 153.9 | 120.3 | $\sqrt{94.3}$ | 78.0 |
| 6 | 402.7 | 303.2 | 308.5 | 248.0 | 286.5 | 207.1 | 229.7 | 154.1 | 146.0 | 110.1 | 85.1 | 69.7 |
| 7 | 402.7 | 298.6 | 307.4 | 229.8 | 286.5 | 186.7 | 213.3 | 140.3 | 132.9 | 99.1 | 76.0 | 61.3 |
| 8 | 402.3 | 278.0 | 286.9 | 210.9 | 272.7 | 170.1 | 195.8 | 126.4 | 119.7 | 88.2 | 66.8 | 52.9 |
| 9 | 379.0 | 257.4 | 266.4 | 192.0 | 254.5 | 153.5 | 178.3 | 112.6 | 106.6 | 77.2 | 57.7 | 44.5 |
| 10 | 355.7 | 236.7 | 245.9 | 173.0 | 236.2 | 136.9 | 160.8 | 98.7 | 93.4 | 66.2 | $\sqrt{50.1}$ | 40.2 |
| 11 | 332.4 | 216.1 | 223.4 | 154.0 | 218.0 | 120.3 | 142.3 | 86.1 | 81.6 | 60.0 | 45.5 | 36.0 |
| 12 | 309.1 | 195.4 | 204.9 | 135.1 | 199.7 | 107.6 | 125.8 | 79.2 | 75.0 | 54.5 | 40.9 | 31.8 |
| 13 | 285.8 | 174.8 | 184.4 | 124.8 | 181.5 | 99.3 | 116.0 | 72.3 | 68.4 | 49.1 | 36.3 | 27.6 |
| 14 | 262.5 | 158.7 | 165.0 | 115.4 | 163.2 | 91.1 | 107.3 | 65.4 | 61.8 | 43.6 | 31.7 | 23.4 |
| 15 | 239.2 | 148.4 | 154.8 | 105.9 | 149.6 | 82.8 | 98.5 | 58.4 | 55.3 | 38.1 | 27.2 | 19.2 |
| 16 | 215.9 | 138.1 | 144.5 | 96.4 | 140.5 | 74.5 | 89.8 | 51.5 | 48.7 | 32.6 | 22.6 |  |
| 17 | 204.7 | 127.8 | 134.3 | 86.9 | 131.4 | 66.2 | 81.0 | 44.6 | 42.1 | 27.1 |  |  |
| 18 | 193.1 | 117.4 | 124.0 | 77.5 | 122.2 | 57.9 | 72.3 | 37.7 | 35.5 |  |  |  |
| 19 | 181.4 | 107.1 | 113.8 | 68.0 | 113.1 | 49.6 | 63.5 |  |  |  |  |  |
| 20 | 169.8 | 96.8 | 103.5 | 58.5 | 104.0 |  | 54.8 |  |  |  |  |  |
| 21 | 158.2 | 86.5 | 93.3 |  | 94.9 |  |  |  |  |  |  |  |
| 22 | 146.5 | 76.2 | 83.0 | - | 85.7 |  |  |  |  |  |  |  |
| 23 | 134.9 | 65.8 | 72.7 |  | 76.6 |  |  |  |  |  |  |  |
| 24 | 123.2 |  |  |  | 67.5 |  |  |  |  |  |  |  |
| 25 | 111.6 |  |  |  |  |  |  |  | . |  |  |  |
| 26 | 99.9 |  |  |  |  |  |  |  |  |  |  |  |
| $27$ | 88.3 |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 28 \\ & 29 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Area, in. ${ }^{2}$ | 30.98 | 23.33 | 23.74 | 19.08 | 22.04 | 15.94 | 17.68 | 12.49 | 11.84 | 9.26 | 7.38 | 6.32 |
| $\mathrm{I}_{1-1}$, in. ${ }^{4}$ | 2811.5 | 2087.2 | 1466.3 | 1169.5 | 1141.8 | 795.5 | 609.0 | 441.8 | 268.9 | 215.8 | 122.1 | 84.9 |
| $\mathrm{r}_{1-1}$, in. | 9.53 | 9.46 | 7.86 | 7.83 | 7.20 | 7.07 | 5.87 | 5.95 | 4.77 | 4.83 | 4.07 | 3.67 |
| $\mathrm{I}_{2-2}$, in. ${ }^{4}$ | 78.9 | 42.9 | 45.8 | 27.9 | 46.3 | 21.2 | 26.0 | 14.6 | 13.8 | 9.5 | 6.9 | 5.2 |
| $\mathrm{r}_{2-2}$, in. | 1.60 | 1.36 | 1.39 | 1.21 | 1.45 | 1.15 | 1.21 | 1.08 | 1.08 | 1.01 | 0.97 | 0.90 |
| Weight, Lbs. per Foot | 105.9 | 79.9 | 81.4 | 65.4 | 75.6 | 54.7 | 60.8 | 42.9 | 40.8 | 31.8 | 25.4 | 21.8 |

[^0]

Safe load values above upper zigzag line are for ratios of $1 / \mathrm{r}$ not over 60 , those between the zigzag lines are for ratios up to $1201 / \mathrm{r}$ and those below lower zigzag line are for ratios not over $200 \mathrm{l} / \mathrm{r}$.

## WORKING STRESSES IN WOOD

The strength of structural wooden timbers depends upon a number of factors; the kind of wood, the age of the tree, the time of year in which it was felled, the method of sawing, the character of seasoning, its moisture content, its proportion of heartwood to sapwood and of knots to clear wood, etc.

The most recent studies in this direction have been made by the American Railway Engineering Association and the tables which follow are based on the working unit stresses adopted by that Association for railway bridges. The values are based on carefully selected timbers purchased under the standard specifications of the Association and subject to careful inspection.

These unit stresses are intended, as noted, for railway bridges and trestles. For highway bridges and trestles and for buildings and similar structures, the unit stresses may be increased in accordance with the more quiescent character of the loading and freedom from deleterious weather conditions.

The commercial timbers, which are in common use in building construction, will not meet A.R.E.A.specifications, and, therefore, the unit stresses approved in the building laws of various cities are lower. The tables, as they stand, are in accord with the average practice as represented by these building laws, and may, therefore, be used for ordinary building work executed with the commercial grades of timber, such as can be purchased in the open market.

In inside mine work where the timbers are often green and, in the case of round timbers, unpeeled, and all subject to stress under rather humid conditions, the tabular values are generally applicable, but no greater values should be used where steel is to be substituted for wooden timbers already in place.

## WOODEN BEAMS

The safe load tables of wooden beams which follow, give the uniformly distributed safe loads for rectangular sections one inch thick; the safe load for a beam of any thickness is found by multiplying the tabular value by the thickness of the beam in inches. The safe loads include the weight of the beams and apply only when the beams are braced against lateral deflection. Tables also give minimum and maximum spans and coefficients of deflection.

The maximum safe loads as limited by the allowable shearing stresses along horizontal axes of beams, indicated by horizontal lines in the tables, should not be exceeded to avoid failure of the beam in horizontal direction of the grain of the wood.

The theoretical deflection in the center of the span for uniformly distributed and permanently applied loads is obtained from the coefficients of deflection by dividing the depth of the beam, in inches, into the corresponding coefficient; the result obtained only approximates the actual deflection, as the modulus of elasticity varies with the moisture content of the wood.

The deflection of beams intended to carry plastered ceilings should not exceed $1 / 860$ of the span; the table gives the maximum spans for this limit, for uniformly distributed and permanently applied loads.

For loads concentrated in center of span, use one-half the values of tabular loads and four-fifths of coefficients of deflection.
Tables of safe loads are also given for common sizes of square and round beams frequently used in the timbering of mines, convenient for ready reference.

Example 1.-Required the thickness and the approximate deflection of a beam of white oak, 14 inches deep, supporting a uniformly distributed and permanent dead and live load of 10,000 pounds over a span of 19 feet.

The tabular value for a beam one inch thick and for a span of 19 feet is 1,261 pounds; the required thickness is therefore $10,000 \div 1,261=8$ inches, and the deflection is $20.72 \div 14=1.48$ inches.

Example 2.-Required the safe load of a beam of white pine, 8 inches deep and 6 inches thick, without exceeding the longitudinal shearing stress.

The table gives for a corresponding beam 1 inch thick a safe load of 747 pounds; the total safe load is therefore $6 \times 747=4,482$ pounds, or the safe load which can be safely supported over a span of 8.6 feet.

Example 3.-Required the safe load of a beam of longleaf pine, 18 inches deep and 12 inches thick, concentrated in the center of a span 26 feet long and the deflection of beam under this concentrated load.

The table gives for a corresponding beam 1 inch thick a uniformly distributed safe load of 1,800 pounds, or for a load in center of span $1,800 \div 2=900$ pounds; for a beam 12 inches wide the safe load is therefore $900 \times 12=10,800$ pounds; the deflection is approximately $1 / \% \times 32.75 \div 18=1.46$ inches.

## WORKING UNIT STRESSES FOR STRUCTURAL TIMBER

## ADOPTED BY THE AMERYCAN RAILWAY ENGINEERING ABSOCIATION

The working unit stresses given in the table are intended for railroad bridges and trestles. For highway bridges and trestles, the unit stresses may be increased 25 per cent. For buildings and similar structures, in which the timber is protected from the weather and practically free from impact, the unit stresses may be increased 50 per cent. To compute the deflection of a beam under long continued loading instead of that when the load is flrst applied, only 50 per cent. of the corresponding modulus of elasticity given in the table is to be employed.

| Unit Stresses in Pounds per Square Inch |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kind of Timber | Bending |  |  | Shearing |  |  |  | Compression |  |  |  |  |  |
|  | Extreme Fiber Stress |  |  | Parallel to the Grain |  | Longitudinal Shear in Beams |  | Perpendicular to the Grain |  | Parallel to the Grain |  | Working Stresses for Columns |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Douglas Fir | 6100 | 1200 | 1510000 | 690 | 170 | 270 | 110 | 630 | 310 | 3600 | 1200 | 900 | 1200(1-1/60d) |
| Longleaf Pine | 6500 | 1300 | 1610000 | 720 | 180 | 300 | 120 | 520 | 260 | 3800 | 1300 | 975 | 1300(1-1/60d) |
| Shortleaf Pine | 5600 | 1100 | 1480000 | 710 | 170 | 330 | 130 | 340 | 170 | 3400 | 1100 | 825 | 1100(1-1/60d) |
| White Pine | 4400 | 900 | 1130000 | 400 | 100 | 180 | 70 | 290 | 150 | 3000 | 1000 | 750 | 1000(1-1/60d) |
| Spruce | 4800 | 1000 | 1310000 | 600 | 150 | 170 | 70 | 370 | 180 | 3200 | 1100 | 825 | $1100(1-1 / 60 d)$ |
| Norway Pine | 4200 | 800 | 1190000 | $590 *$ | 130 | 250 | 100 |  | 150 | 2600* | 800 | 600 | 800(1-1/60d) |
| Tamarack | 4600 | 900 | 1220000 | 670 | 170 | 260 | 100 |  | 220 | 3200** | 1000 | 750 | $1000(1-1 / 60 d)$ |
| Western Hemlock | 5800 | 1100 | 1480000 | 630 | 160 | 270* | 100 | 440 | 220 | 3500 | 1200 | 900 | 1200 (1-1/60d) |
| Redwood | 5000 | 900 | 800000 |  | 80 |  |  | 400 | 150 | 3300 | 900 | 675 | $900(1-1 / 60 \mathrm{~d})$ |
| Bald Cypress | 4800 | 900 | 1150000 | 500 | 120 |  |  | 340 | 170 | 3900 | 1100 | 825 | $1100(1-1 / 60 \mathrm{~d})$ |
| Red Cedar | 4200 | 800 | 800000 |  |  |  |  | 470 | 230 | 2800 | 900 | 675 | $900(1-1 / 60 d)$ |
| White Oak | 5700 | 1100 | 1150000 | 840 | 210 | 270 | 110 | 920 | 450 | 3500 | 1300 | 975 | 1300 (1-1/60d) |
| Unit stresses are for green timber and are to be used without increasing the live load stresses for impact. Values noted* are for partially air dry timbers. <br> In the formulas given for columns, $1=$ length of column, in inches, and $\mathrm{d}=$ least side or diameter, in inches. |  |  |  |  |  |  |  |  |  |  |  |  |  |

## RECTANGULAR WOODEN BEAMS-ONE INCH THICK

Maximum Safe Loads and Limiting Spans

|  | White Oak |  | Longleaf Pine |  | Shortleaf Pine |  | White Pine |  | Douglas Fir |  | Western Hemlock |  | Spruce |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 등ㅁㅁ } \\ & \text { 응 } \\ & \hline \end{aligned}$ | Max. <br> Load, <br> Lbs. | Min. <br> Span, Ft. | Max. <br> Load, <br> Lbs. |  | Max. <br> Load, Lbs. | Min. <br> Span, Ft. | Max. Load, Lbs. | Min. <br> Span, <br> Ft . | Max. <br> Load, <br> Lbs. | $\underset{\text { Span. }}{\text { Min. }}$ Ft . | Max. <br> Load, <br> Lbs. | Min <br> Span, Ft . | Max. <br> Load, Lbs. | Min. Span, Ft. |
| 2 |  | 1.7 | 320 |  | 析 | 1.4 | 187 | 2.1 |  | 1.8 | , |  |  |  |
| 4 | 587 | 3.3 | 640 | 3.6 | 693 | 2.8 | 373 | 4.3 | 587 | 3.6 | 533 | 3. | 373 | 4. |
| 6 | 880 | 5.0 | 960 | 5.4 | 1040 | 4.2 | 560 | 6.4 | 880 | 5.5 | 800 | 5. | 560 | 7.1 |
| 8 | 1173 | 6.7 | 1280 | 7.2 | 1387 | 5.6 | 747 | 8.6 | 1173 | $7: 3$ | 1067 | 7. | 747 | 9.5 |
| 10 | 1467 | 8.4 | 1600 | 9.0 | 1733 | 7.1 | 933 | 10.7 | 1467 | 9.1 | 1333 | 9.2 | 933 | 11.9 |
| 12 | 1760 | 10.0 | 1920 | 10.8 | 2080 | 8.5 | 1120 | 12.9 | 1760 | 10.9 | 1600 | 11.0 | 1120 | 14.3 |
| 14 | 2053 | 11.7 | 2240 | 12.6 | 2427 | 9.9 | 1307 | 15.0 | 2053 | 12.8 | 1867 | 12.8 | 1307 | 16.7 |
| 16 | 2347 | 13.4 | 2560 | 14.4 | 2773 | 11.3 | 1493 | 17.1 | 2347 | 14.6 | 2133 | 14.7 | 1493 | 19.0 |
| 18 | 2640 | 15.0 | 2880 | 16.3 | 3120 | 12.7 | 1680 | 19.3 | 2640 | 16.4 | 2400 | 16.5 | 1680 | 21.4 |
| 20 | 2933 | 16.7 | 3200 | 18.1 | 3467 | 14.1 | 1867 | 21.4 | 2933 | 18.2 | 2667 | 18.3 | 1867 | 23.8 |
| 22 | 3227 | 18.4 | 3520 | 19.9 | 3813 | 15.5 | 2053 | 23.6 | 3227 | 20.0 | 2933 | 20.2 | 2053 | 26.2 |
| 24 | 352 | 20.0 | 3840 | 21. | 4160 | 16.9 | 2240 | 25.7 | 3520 | 21.9 | 3200 | 22.0 | 2240 | 28.6 |

Coefficients of Deflection for Permanent Loads

| $\begin{gathered} \text { Span } \\ \text { in } \\ \text { Feet } \end{gathered}$ | White Oak | Longleaf Pine | Short- leaf Pine, Western Hem- lock | White Pine, Douglas Fir | Spruce | $\begin{aligned} & \text { Span } \\ & \text { in } \\ & \text { Feet } \end{aligned}$ | White Oak | $\begin{aligned} & \text { Long- } \\ & \text { leaf } \\ & \text { Pine } \end{aligned}$ | Shortleaf Pine, Western Hemlock | White <br> Pine, <br> Douglas Fir | Spruce |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0 | 0.0 | 0.05 | 0.05 | 0.05 | 21 | 25.31 | 21.37 | 19.67 | 21.05 | 20.20 |
| 2 | 0.23 | 0.19 | 0.18 | 0.19 | 0.18 | 22 | 27.78 | 23.44 | 21.59 | 23.10 | 22.17 |
| 3 | 0.52 | 0.44 | 0.40 | 0.43 | 0.41 | 23 | 30.37 | 25.63 | 23.59 | 25.25 | 24.23 |
| 4 | 0.92 | 0.78 | 0.71 | 0.76 | 0.73 | 24 | 33.06 | 27.91 | 25.69 | 27.49 | 26.38 |
| 5 | 1.44 | 1.21 | 1.12 | 1.19 | 1.15 | 25 | 35.88 | 30.28 | 27.88 | 29.83 | 28.63 |
| 6 | 2.07 | 1.74 | 1.61 | 1.72 | 1.65 | 26 | 38.80 | 32.75 | 30.15 | 32.27 | 30.96 |
| 7 | 2.81 | 2.37 | 2.19 | 2.34 | 2.24 | 27 | 41.85 | 35.32 | 32.51 | 34.80 | 33.39 |
| 8 | 3.67 | 3.10 | 2.85 | 3.06 | 2.93 | 28 | 45.00 | 37.99 | 34.97 | 37.42 | 35.91 |
| 9 | 4.65 | 3.92 | 3.61 | 3.87 | 3.71 | 29 | 48.27 | 40.75 | 37.51 | 40.14 | 38.52 |
| 10 | 5.74 | 4.85 | 4.46 | 4.77 | 4.58 | 30 | 51.66 | 43.61 | 40.14 | 42.96 | 41.22 |
| 11 | 6.95 | 5.86 | 5.40 | 5.78 | 5.54 | 31 | 55.16 | 46.56 | 42.86 | 45.87 | 44.01 |
| 12 | 8.27 | 6.98 | 6.42 | 6.87 | 6.60 | 32 | 58.78 | 49.61 | 45.67 | 48.88 | 46.90 |
| 13 | 9.70 | 8.19 | 7.54 | 8.07 | 7.74 | 33 | 62.51 | 52.76 | 48.57 | 51.98 | 49.88 |
| 14 | 11.25 | 9.50 | 8.74 | 9.36 | 8.98 | 34 | 66.35 | 56.01 | 51.56 | 55.18 | 52.95 |
| 15 | 12.92 | 10.90 | 10.04 | 10.74 | 10.31 | 35 | 70.32 | 59.35 | 54.64 | 58.47 | 56.11 |
| 16 | 14.69 | 12.40 | 11.42 | 12.22 | 11.73 | 36 | 74.39 | 62.79 | 57.80 | 61.86 | 59.36 |
| 17 | 16.59 | 14.00 | 12.89 | 13.79 | 13.24 | 37 | 78.58 | 66.33 | 61.06 | 65.34 | 62.70 |
| 18 | 18.60 | 15.70 | 14.45 | 15.47 | 14.84 | 38 | 82.89 | 69.96 | 64.40 | 68.92 | 66.14 |
| 19 | 20.72 | 17.49 | 16.10 | 17.23 | 16.53 | 39 | 87.31 | 73.69 | 67.84 | 72.60 | 69.66 |
| 20 | 22.96 | 19.38 | 17.84 | 19.09 | 18.32 | 40 | 91.84 | 77.52 | 71.36 | 76.37 | 73.28 |

Maximum Spans in Feet for Deflections $=1 / 360$ Span

| Species of Timber | Depth of Beam in Inches |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| White Oak | 1.2 | 2.3 | 3.5 | 4.6 | 5.8 | 7.0 | 8.1 | 9.3 |  | 11.6 | 12.8 | 13.9 |
| Longleaf Pine | 1.4 | 2.8 | 4.1 | 5.5 | 6.9 | 8.3 | 9.6 |  |  | 13.8 | 15.1 | 16.5 |
| Shortleaf Pine, Hemlock | 1.5 | 3.0 | 4.5 | 6.0 | 7.5 | 9.0 | 10.5 |  |  |  | 16.4 | 17.9 |
| White Pine, Douglas Fir | 1.4 | 2.8 | 4.2 | 5.6 | 7.0 | 8.4 | 9.8 |  |  |  | 15.4 | 16.7 |
| Spruce | 1.5 | 2.9 | 4.4 | 5.8 | 7.3 | 8.7 | 10.2 | 11.6 | 13.1 | 14.6 | 16.0 | 17.5 |

CARNEGIE STEEL COMPANY

## RECTANGULAR WOODEN BEAMS-ONE INCH THICK

 LONGLEAF PINEAllowable Uniform Load in Pounds
Maximum Bending Stress, 1300 Pounds per Square Inch


Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain.

## RECTANGULAR WOODEN BEAMS-ONE INCH THICK DOUGLAS FIR

Allowable Uniform Load in Pounds
Maximum Bending Stress, 1200 Pounds per Square Inch

| $\begin{gathered} \text { Span } \\ \text { in } \\ \text { Feet } \end{gathered}$ | Depth of Beam in Inches |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
|  | 228 | 687 | 880 | 1173 | 1467 | 1760 | 2058 | 2347 |  |  |  |  |
| $\frac{2}{3}$ | $\begin{aligned} & 267 \\ & 178 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |
| 4 | 133 | 533 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 | 89 | 356 | 800 |  |  |  |  |  |  |  |  |  |
| 7 | 76 | 305 | 686 |  |  |  |  |  |  |  |  |  |
| 8 | 67 | 267 | 600 | 1067 |  |  |  |  |  |  |  |  |
| 9 |  | 237 | 533 | 948 |  |  |  |  |  |  |  |  |
| 10 |  | 213 | 480 | 853 | 1333 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 |  | 194 | 436 | 776 | 1212 | 1745 |  |  |  |  |  |  |
| 12 |  | 178 | 400 | 711 | 1111 | 1600 |  |  |  |  |  |  |
| 13 |  |  | 369 | 656 | 1026 | 1477 | 2010 |  |  |  |  |  |
| 14 |  |  | 343 | 610 | 952 | 1371 | 1867 |  |  |  |  |  |
| 15 |  |  | 320 | 569 | 889 | 1280 | 1742 | 2276 |  |  |  |  |
| 16 |  |  | 300 | 533 | 833 | 1200 | 1633 | 2133 | 2640 |  |  |  |
| 17 |  |  |  | 502 | 784 | 1129 | 1537 | 2008 | 2541 |  |  |  |
| 18 |  |  |  | 474 | 741 | 1067 | 1452 | 1896 | 2400 | 2993 |  |  |
| 19 |  |  |  | 449 | 702 | 1011 | 1375 | 1796 | 2274 | 2807 | 3297 |  |
| 20 |  |  |  | 427 | 667 | 960 | 1307 | 1707 | 2160 | 2667 | 3227 |  |
| 21 |  |  |  |  | 635 | 914 | 1244 | 1625 | 2057 | 2540 | 3073 | 3750 |
| 22 |  |  |  |  | 606 | 873 | 1188 | 1552 | 1964 | 2424 | 2933 | 3491 |
| 23 |  |  |  |  | 580 | 835 | 1136 | 1484 | 1878 | 2319 | 2806 | 3339 |
| 24 |  |  |  |  | 556 | 800 | 1089 | 1422 | 1800 | 2222 | 2689 | 3200 |
| 25 |  |  |  |  |  | 768 | 1045 | 1365 | 1728 | 2133 | 2581 | 3072 |
| 26 |  |  |  |  |  | 738 | 1005 | 1313 | 1662 | 2051 | 2482 | 2954 |
| 27 |  |  |  |  |  | 711 | 968 | 1264 | 1600 | 1975 | 2390 | 2844 |
| 28 |  |  |  |  |  | 686 | 933 | 1219 | 1543 | 1905 | 2305 | 2743 |
| 29 |  |  |  |  |  |  | 901 | 1177 | 1490 | 1839 | 2225 | 2648 |
| 30 |  |  |  |  |  |  | 871 | 1138 | 1440 | 1778 | 2151 | 2560 |
| 31 |  |  |  |  |  |  | 843 | 1101 | 1394 | 1720 | 2082 | 2477 |
| 32 |  |  |  |  |  |  | 817 | 1067 | 1350 | 1667 | 2017 | 2400 |
| 33 |  |  |  |  |  |  |  | 1034 | 1309 | 1616 | 1956 | 2327 |
| 34 |  |  |  |  |  |  |  | 1004 | 1271 | 1569 1524 | 1898 | 2259 |
| 35 |  |  |  |  |  |  |  | 975 | 1234 | 1524 | 1844 | 2194 |
| 36 |  |  |  |  |  |  |  | 948 | 1200 | 1481 | 1793 | 2133 |
| 37 |  |  |  |  |  |  |  |  | 1168 | 1441 | 1744 | 2076 |
| 38 |  |  |  |  |  |  |  |  | 1137 | 1404 | 1698 | 2021 |
| 39 |  |  |  |  |  |  |  |  | 1108 | 1368 | 1655 | 1969 |
| 40 |  |  |  |  |  |  |  |  | 1080 | 1333 | 1613 | 1920 |

Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain.

CARNEGIE STEEL COMPANY

## RECTANGULAR WOODEN BEAMS-ONE INCH THICK shortleaf pine, western hemlock and white oak

Allowable Uniform Load in Pounds
Maximum Bending Stress, 1100 Pounds per Square Inch

| $\begin{gathered} \text { Span } \\ \text { in } \\ \text { Feet } \end{gathered}$ | Depth of Beam in Inches |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| 2 | 977 | 698 | 1040 | 1887 | 1733 | 2080 | 2427 | 2773 | 3120 | $\frac{3467}{3259}$ | 3818 |  |
|  | 245 |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 163 | 652 |  |  |  |  |  |  |  |  |  |  |
| 4 | 122 | 489 |  |  |  |  |  |  |  |  |  |  |
| 5 | 98 | 391 | 880 |  |  |  |  |  |  |  |  |  |
| 6 | 82 | 326 | 733 | 1304 |  |  |  |  |  |  |  |  |
| 7 | 70 | 279 | 629 | 1117 |  |  |  |  |  |  |  |  |
| 8 | 61 | 245 | 550 | 978 | 1528 |  |  |  |  |  |  |  |
| 9 |  | 217 | 489 | 869 | 1353 | 1956 |  |  |  |  |  |  |
| 10 |  | 196 | 440 | 782 | 1222 | 1760 | $\begin{aligned} & 2396 \\ & 2178 \end{aligned}$ |  |  |  |  |  |
| 11 |  | 178 | 400 | 711 | 1111 | 1600 |  |  |  |  |  |  |
| 12 |  | 163 | 367 | 652 | 1019 | 1467 | 1996 | 2607 |  |  |  |  |
| 13 |  |  | 338 | 602 | 940 | 1354 | 1843 | 2407 | 3046 |  |  |  |
| 14 |  |  | 314 | 559 | 873 | 1257 | 1711 | 2235 | 2829 |  |  |  |
| 15 |  |  | 293 | 522 | 816 | 1173 | 1597 | 2086 | 2640 |  |  |  |
| 16 |  |  | 275 | 489 | 764 | 1100 | 1497 | 1956 | 2475 | 3055 | $\overline{3697}$ | 4160 |
| 17 |  |  |  | 460 | 719 | 1035 | 1409 | 1841 | 2329 | 2876 | 3480 | 4141 |
| 18 |  |  |  | 435 | 679 | 978 | 1331 | 1738 | 2200 | 2716 | 3287 | 3911 |
| 19 |  |  |  | 412 | 643 | 926 | 1261 | 1647 | 2084 | 2573 | 3113 | 3705 |
| 20 |  |  |  | 391 | 611 | 880 | 1198 | 1564 | 1980 | 2444 | 2958 | 3520 |
| 21 |  |  |  |  | 583 | 838 | 1141 | 1490 | 1886 | 2328 | 2817 | 3352 |
| 22 |  |  |  |  | 556 | 800 | 1089 | 1422 | 1800 | 2222 | 2689 | 3200 |
| 23 |  |  | . |  | 531 | 765 | 1042 | 1361 | 1722 | 2126 | 2572 | 3061 |
| 24 |  |  |  |  | 509 | 733 | 998 | 1304 | 1650 | 2037 | 2465 | 2933 |
| 25 |  |  |  |  |  | 704 | 958 | 1252 | 1584 | 1956 | 2366 | 2816 |
| 26 |  |  |  |  |  | 677 | 921 | 1203 | 1523 | 1880 | 2275 | 2708 |
| 27 |  |  |  |  |  | 652 | 887 | 1159 | 1467 | 1811 | 2191 | 2608 |
| 28 |  |  |  |  |  | 629 | 856 | 1118 | 1414 | 1746 | 2113 | 2514 |
| 29 |  |  |  |  |  |  | 826 | 1079 | 1366 | 1686 | 2040 | 2428 |
| 30 |  |  |  |  |  |  | 799 | 1043 | 1320 | 1630 | 1973 | 2348 |
| 31 |  |  |  |  |  |  | 773 | 1009 | 1278 | 1577 | 1908 | 2271 |
| 32 |  |  |  |  |  |  | 749 | 978 | 1238 | 1528 | 1849 | 2200 |
| 33 |  |  |  |  |  |  |  | 948 | 1200 | 1482 | 1793 | 2133 |
| 34 |  |  |  |  |  |  |  | 920 | 1165 | 1438 | 1740 | 2071 |
| 35 |  |  |  |  |  |  |  | 894 | 1131 | 1397 | 1690 | 2011 |
| 36 |  |  |  |  |  |  |  | 869 | 1100 | 1358 | 1643 | 1956 |
| 37 |  |  |  |  |  |  |  |  | 1070 | 1321 | 1599 | 1903 |
| 38 |  |  |  |  |  |  |  |  | 1042 | 1287 | 1557 | 1853 |
| 39 |  |  |  |  |  |  |  |  | 1015 | 1254 | 1517 | 1805 |
| 40 |  |  |  |  |  |  |  |  | 990 | 1222 | 1479 | 1760 |

Upper, middle, and lower horizontal lines indicate the limits for resistance to shear in the horizontal direction of the grain of Shortleaf Pine, White Oak, and Hemlock respectively,

## RECTANGULAR WOODEN BEAMS-ONE INCH THICK spruce

Allowable Uniform Load in Pounds
Maximum Bending Stress, 1000 Pounds per Square Inch

|  | Depth of Beam in Inches |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| et | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| 2 | 187 |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 148 |  |  |  |  |  |  |  |  |  |  |  |
| 5 | 89 | 356 |  |  |  |  |  |  |  |  |  |  |
| 6 | 74 | 296 |  |  |  |  |  |  |  |  |  |  |
| 7 | 63 | 254 | 560 |  |  |  |  |  |  |  |  |  |
| 8 | 56 | 229 | 500 |  |  |  |  |  |  |  |  |  |
| 9 |  | 198 | 444 | 747 |  |  |  |  |  |  |  |  |
| 10 |  | 178 | 400 | 711 |  |  |  |  |  |  |  |  |
| 11 |  | 162 | 364 | 646 | 803 |  |  |  |  |  |  |  |
| 12 |  | 148 | 333 | 593 | 926 |  |  |  |  |  |  |  |
| 13 |  |  | 308 | 547 | 855 |  |  |  |  |  |  |  |
| 14 |  |  | 286 | 508 | 794 | 1120 |  |  |  |  |  |  |
| 15 |  |  | 267 | 474 | 741 | 1067 |  |  |  |  |  |  |
| 16 |  |  | 250 | 444. | 694 | 1000 | 1307 |  |  |  |  |  |
| 17 |  |  |  | 418 | 654 | 941 | 1281 |  |  |  |  |  |
| 18 |  |  |  | 395 | 617 | 889 | 1210 |  |  |  |  |  |
| 19 |  |  |  | 374 | 585 | 842 | 1146 | 1493 |  |  |  |  |
| 20 |  |  |  | 356 | 556 | 800 | 1089 | 1422 |  |  |  |  |
| 21 |  |  |  |  | 529 | 762 | 1037 | 1354 | 1680 |  |  |  |
| 22 |  |  |  |  | 505 | 727 | 990 | 1293 | 1636 |  |  |  |
| 23 |  |  |  |  | 483 | 696 | 947 | 1237 | 1565 | 1567 |  |  |
| 24 |  |  |  |  | 463 | 667 | 907 | 1185 | 1500 | 1852 |  |  |
| 25 |  |  |  |  |  | 640 | 871 | 1138 | 1440 | 1778 |  |  |
| 26 |  |  |  |  |  | 615 | 838 | 1094 | 1385 | 1709 | 2653 |  |
| 27 |  |  |  |  |  | 593 | 807 | 1053 | 1333 | 1646 | 1992 |  |
| 28 |  |  |  |  |  | 571 | 778 | 1016 | 1286 | 1587 | 1921 | 2240 |
| 29 |  |  |  |  |  |  | 751 | 981 | 1241 | 1533 | 1854 | 2207 |
| 30 |  |  |  |  |  |  | 726 | 948 | 1200 | 1481 | 1793 | 2133 |
| 31 |  |  |  |  |  |  | 703 | 918 | 1161 | 1434 | 1735 | 2065 |
| 32 |  |  |  |  |  |  | 681 | 889 | 1125 | 1389 | 1681 | 2000 |
| 33 |  |  |  |  |  |  |  | 862 | 1091 | 1347 | 1630 | 1939 |
| 34 |  |  |  |  |  |  |  | 837 | 1059 | 1307 | 1582 | 1882 |
| 35 |  |  |  |  |  |  |  | 813 | 1029 | 1270 | 1537 | 1829 |
| 36 |  |  |  |  |  |  |  | 790 | 1000 | 1235 | 1494 | 1778 |
| 37 |  |  |  |  |  |  |  |  | 973 | 1201 | 1453 | 1730 |
| 38 |  |  |  |  |  |  |  |  | 947 | 1169 | 1415 | 1684 |
| 39 |  |  |  |  |  |  |  |  | 923 | 1140 | 1379 | 1641 |
| 40 |  |  |  |  |  |  |  |  | 900 | 1111 | 1344 | 1600 |

Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain.

## RECTANGULAR WOODEN BEAMS-ONE INCH THICK white pine

Allowable Uniform Load in Pounds
Maximum Bending Stress, 900 Pounds per Square Inch

|  | Depth of Beam in Inches |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feet | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| 2 | 187 |  |  |  |  |  |  |  |  |  |  |  |
| 4 | 100 | 373 |  |  |  |  |  |  |  |  |  |  |
| 5 | 80 | 320 |  |  |  |  |  |  |  |  |  |  |
| 6 | 67 | 267 | 800 |  |  |  |  |  |  |  |  |  |
| 7 | 57 | 229 | 514 |  |  |  |  |  |  |  |  |  |
| 8 | 50 | 200 | 450 | 747 |  |  |  |  |  |  |  |  |
| ${ }_{9}^{9}$ |  | 178 160 | 400 360 | 711 640 |  |  |  |  |  |  |  |  |
| 10 |  | 160 | 360 |  | 938 |  |  |  |  |  |  |  |
| 11 |  | 145 | 327 | 582 | 909 |  |  |  |  |  |  |  |
| 12 |  | 133 | 300 | 533 | 833 | 1120 |  |  |  |  |  |  |
| 13 |  |  | 277 | 492 | 769 | 1108 |  |  |  |  |  |  |
| 14 |  |  | 257 | 457 | 714 | 1029 | 1807 |  |  |  |  |  |
| 15 |  |  | 240 | 427 | 667 | 960 | 1307 |  |  |  |  |  |
| 16 |  |  | 225 | 400 | 625 | 900 | 1225 |  |  |  |  |  |
| 17 |  |  |  | 377 | 588 | 847 | 1153 | 1498 |  |  |  |  |
| 18 |  |  |  | 356 | 556 | 800 | 1089 | 1422 |  |  |  |  |
| 19 |  |  |  | 337 | 526 | 758 | 1032 | 1347 | 1680 |  |  |  |
| 20 |  |  |  | 320 | 500 | 720 | 980 | 1280 | 1620 |  |  |  |
| 21 |  |  |  |  | 476 | 686 | 933 | 1219 | 1543 | 1867 |  |  |
| 22 |  |  |  |  | 455 | 655 | 891 | 1164 | 1473 | 1818 |  |  |
| 23 |  |  |  |  | 435 | 626 | 852 | 1113 | 1409 | 1739 | 2053 |  |
| 24 |  |  |  |  | 417 | 600 | 817 | 1067 | 1350 | 1667 |  |  |
| 25 |  |  |  |  |  | 576 | 784 | 1024 | 1296 | 1600 | $1936$ |  |
|  |  |  |  |  |  |  |  |  |  |  |  | 2340 |
| 26 |  |  |  |  |  | 554 | 754 | 985 | 1246 | 1538 | 1862 | 2215 |
| 27 |  |  |  |  |  | 533 | 726 | 948 | 1200 | 1481 | 1793 | 2133 |
| 28 |  |  |  |  |  | 514 | 700 | 914 | 1157 | 1429 | 1729 | 2057 |
| 29 |  |  |  |  |  |  | 676 | 883 | 1117 | 1379 | 1669 | 1986 |
| 30 |  |  |  |  |  |  | 653 | 853 | 1080 | 1333 | 1613 | 1920 |
| 31 |  |  |  |  |  |  | 632 | 826 | 1045 | 1290 | 1561 | 1858 |
| 32 |  |  |  |  |  |  | 613 | 800 | 1013 | 1250 | 1513 | 1800 |
| 33 |  |  |  |  |  |  |  | 776 | 982 | 1212 | 1467 | 1746 |
| 34 |  |  |  |  |  |  |  | 753 | 953 | 1176 | 1424 | 1694 |
| 35 |  |  |  |  |  |  |  | 731 | 926 | 1143 | 1383 | 1646 |
|  |  |  |  |  |  |  |  | 711 | 900 | 1111 | 1344 | 1600 |
| 37 |  |  |  |  |  |  |  |  | 876 | 1081 | 1308 | 1557 |
| 38 |  |  |  |  |  |  |  |  | 853 | 1053 | 1274 | 1516 |
| 39 |  |  |  |  |  |  |  |  | 831 | 1026 | 1241 | 1477 |
| 40 |  |  |  |  |  |  |  |  | 810 | 1000 | 1210 | 1440 |

Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain.

TIMBER SAFE LOADS
SQUARE WOODEN BEAMS
Allowable Uniform Loads in Thousands of Pounds
American Railway Engineering Association Fiber Stresses


Loads in small figures are the limit for resistance to horizontal shear.

CARNEGIE STEEL COMPANY


## WOODEN COLUMNS

The safe load tables of wooden columns which follow, based upon the working unit stresses adopted by the American Railway Engineering Association, give the allowable direct compressive loads for square and round columns.

The safe loads of rectangular columns may be found from the safe loads of square columns by direct proportion of areas, using the safe load unit stress of the square column whose side is equal to the least side of the rectangular section.

The following table gives the safe load in pounds per square inch of sectional area for ratios of

$$
\frac{1}{\mathrm{~d}}=\frac{\text { effective length of column, in inches }}{\text { least side or diameter, in inches }}
$$

ranging between limits of 15 and 30 .
Unit Working Stresses in Pounds per Square Inch

| $\frac{1}{d}$ | Longleaf Fine, White Oak | Douglas Fir, Western Hemlock | Shortleaf Pine, Spruce, Bald Cypress | White Pine, Tamarack | Red Cedar, Redwood | $\begin{aligned} & \text { Norway } \\ & \text { Pine } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1300 (1-1/d60) | 1200 (1-1/d60) | $1100(1-1 / d 60)$ | 1000 (1-1/d60) | $900(1-1 / d 60)$ | $800(1-1 / d 60)$ |
| 15 | 975 | 900 | 825 | 750 | 675 | 600 |
| 16 | 953 | 880 | 807 | 733 | 660 | 587 |
| 17 | 931 | 860 | 788 | 717 | 645 | 573 |
| 18 | 910 | 840 | 770 | 700 | 630 | 560 |
| 19 | 888 | 820 | 752 | 683 | 615 | 547 |
| 20 | 867 | 800 | 733 | 667 | 600 | 533 |
| 21 | 845 | 780 | 715 | 650 | 585 | 520 |
| 22 | 823 | 760 | 697 | 633 | 570 | 507 |
| 23 | 802 | 740 | 678 | 617 | 555 | 493 |
| 24 | 780 | 720 | 660 | 600 | 540 | 480 |
| 25 | 758 | 700 | 642 | 583 | 525 | 467 |
| 26 | 737 | 680 | 623 | 567 | 510 | 553 |
| 27 | 715 | 660 | 605 | 550 | 495 | 440 |
| 28 | 693 | 640 | 587 | 533 | 480 | 427 |
| 29 | 672 | 620 | 568 | 517 | 465 | 413 |
| 30 | 650 | 600 | 550 | 500 | 450 | 400 |

Example 1.-Required the allowable load for a column of white oak $10^{\prime \prime} \times 8^{\prime \prime}, 14$ feet long.

The safe load given in the table for a square white oak column $8^{\prime \prime} \times 8^{\prime \prime}$, 14 feet long, is 54,100 pounds. The load for the $10^{\prime \prime} \times 8^{\prime \prime}$ section is $10 \times 54,100 \div 8=67,600$ pounds.

Example 2,-Required the allowable load for a spruce pile, $9^{\prime \prime}$ diameter and 18 feet long.

The unit stress given in the above table for the corresponding ratio of $1 / \mathrm{d}, 18 \times 12 \div 9=24$ is 660 pounds, and the sectional area for a $9^{\prime \prime}$ round is 63.62 square inches. The safe load, therefore, is $63.62 \times 660=42,000$ pounds.

CARNEGIE STEEL COMPANY

| SQUARE WOODEN COLUMNS <br> Safe Loads in Thousands of Pounds merican Rallway Engineering Association Formulas |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Length, Feet | Side of Square, Inches |  |  |  |  |  |  |  |  |
|  |  | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
|  | $\begin{array}{r} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ \hline \end{array}$ | $\begin{gathered} 15.6 \\ \hline 15.6 \\ 14.6 \\ 13.5 \\ 12.5 \\ 11.4 \\ 10.4 \end{gathered}$ | 25.1 34.3 32.8 31.2 29.6 28.1 25.0 | 62.4 <br> 62.4 <br> 60.3 <br> 58.2 <br> 54.1 <br> 49.9 <br> 45.8 <br> 41.6 | $\begin{gathered} 97.5 \\ \hline 93.6 \\ 88.4 \\ 83.2 \\ 78.0 \end{gathered}$ | $\begin{aligned} & 140.4 \\ & \hline 137.3 \\ & 131.0 \\ & 124.8 \end{aligned}$ | $\begin{array}{\|l\|} \frac{191.1}{} \\ \hline 189.3 \\ 182.0 \end{array}$ | $\frac{249.6}{249.6}$ | 315.9 | 390.0 |
|  | $\begin{array}{r} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \end{array}$ | $\begin{array}{r} 14.4 \\ \hline 14.4 \\ 13.4 \\ 12.5 \\ 11.5 \\ 10.6 \\ 9.6 \end{array}$ | 32.4 <br> 31.7 <br> 30.2 <br> 28.8 <br> 27.4 <br> 25.9 <br> 23.0 | 57.6 <br> 57.6 <br> 55.7 <br> 53.8 <br> 49.9 <br> 46.1 <br> 42.2 <br> 38.4 | 90.0 <br> 86.4 <br> 81.6 <br> 76.8 <br> 72.0 | 129.6 <br> 126.7 <br> 121.0 <br> 115.2 | $\begin{aligned} & 176.4 \\ & \hline 174.7 \\ & 168.0 \end{aligned}$ | $\frac{230.4}{230.4}$ | 291.6 | 300.0 |
|  | $\begin{array}{r} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ \hline \end{array}$ | 13.2 <br> 13.2 <br> 12.3 <br> 11.4 <br> 10.6 <br> 9.7 <br> 8.8 | 29.7 -29.0 27.7 26.4 25.1 23.8 21.1 | t2.8 <br> 52.8 <br> 51.0 <br> 49.3 <br> 45.8 <br> 42.2 <br> 38.7 <br> 35.2 | 82.5 <br> 79.2 <br> 74.8 <br> 70.4 <br> 66.0 | 118.8 <br> 116.2 <br> 110.9 <br> 105.6 | $\begin{aligned} & \frac{161.7}{160.2} \\ & 154.0 \end{aligned}$ | $\frac{211.2}{211.2}$ | 267.3 | 230.0 |
|  | $\begin{array}{r} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \end{array}$ |  <br> 12.0 <br> 12.0 <br> 11.2 <br> 10.4 <br> 9.6 <br> 8.8 <br> 8.0 | 27.0 <br> 26.4 <br> 25.2 <br> 24.0 <br> 22.8 <br> 21.6 <br> 19.2 | 48.0 <br> 48.0 <br> 46.4 <br> 44.8 <br> 41.6 <br> 38.4 <br> 35.2 <br> 32.0 | $\begin{array}{r} 75.0 \\ \hline 72.0 \\ 68.0 \\ 64.0 \\ 60.0 \end{array}$ | $\begin{array}{r} 108.0 \\ \hline 105.6 \\ 100.8 \\ 96.0 \end{array}$ | $\begin{aligned} & 147.0 \\ & \hline 145.6 \\ & 140.0 \end{aligned}$ | $\frac{192.0}{192.0}$ | 243.0 | 300.0 |

Loads in amall figures above horizontal lines are the maximum allowable safe loads.

## TIMBER SAFE LOADS

## ROUND WOODEN COLUMNS

Safe Loads in Thousands of Pounds
American Railway Engineering Association Formulas


Loads in small figures above horizontal lines are the maximum allowable safe loads.

CARNEGIE STEEL COMPANY

## DECIMAL OF AN INCH AND OF A FOOT

| Fractions of Inch or Foot |  |  | Fractions of Inch or Foot |  |  | $\begin{aligned} & \text { Fractions } \\ & \text { Inch of Foot } \end{aligned}$ |  |  | $\begin{gathered} \text { Fractions } \\ \text { of } \\ \text { Inch or Foot } \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} .0052 \\ .0104 \end{array}$ | $\frac{1}{16}$ |  | $\begin{aligned} & .2552 \\ & .2604 \end{aligned}$ | $\begin{aligned} & 3 \frac{1}{16} \\ & 31 / 8 \end{aligned}$ |  | $\begin{aligned} & .5052 \\ & .5104 \end{aligned}$ | $\begin{aligned} & 6 \frac{1}{1 / 8} \\ & 61 / 8 \end{aligned}$ |  | $\begin{aligned} & .7552 \\ & .7604 \end{aligned}$ | $\begin{aligned} & 9 \frac{1}{1 / 6} \\ & 9 \frac{1}{3} \end{aligned}$ |
| －1 | $\begin{aligned} & .015625 \\ & .0208 \\ & .0260 \end{aligned}$ | $\frac{x^{\frac{1}{4}}}{\frac{1}{16}}$ | $\frac{17}{17}$ | $\begin{aligned} & .265625 \\ & .2708 \\ & .2760 \end{aligned}$ | $\begin{aligned} & 3 \frac{2}{16} \\ & 3 \frac{1}{4} \\ & 3 \frac{16}{16} \end{aligned}$ | 32 | $\begin{aligned} & .515625 \\ & .5208 \\ & .5260 \end{aligned}$ | $\begin{aligned} & 6 \frac{2}{15} \\ & 6 \frac{14}{4} \\ & 6 \frac{1}{16} \end{aligned}$ | 48 | $\begin{aligned} & .765625 \\ & .7708 \\ & .7760 \end{aligned}$ | $\begin{aligned} & 972 \\ & 931 / 2 \\ & 918 \end{aligned}$ |
| 2 2 | .03125 .0365 .0417 | $\begin{aligned} & \frac{3}{3} \\ & \frac{1}{6} / 2 \end{aligned}$ | 绿 | .28125 .2865 .2917 | $\begin{aligned} & 3 \frac{1}{8} \\ & 3 \frac{16}{16} \\ & 35 \end{aligned}$ | 经 | $\begin{aligned} & .53125 \\ & .5365 \\ & .5417 \end{aligned}$ | $\begin{aligned} & 635 \\ & 6 \frac{1}{15} \\ & 6 \frac{1}{2} \end{aligned}$ | $3{ }^{3}$ | $\begin{aligned} & .78125 \\ & .7865 \\ & .7917 \end{aligned}$ | $\begin{aligned} & 9 \frac{1 / 8}{8} \\ & 9 \frac{1}{16} \\ & 91 / 2 \end{aligned}$ |
| ${ }^{3}$ | $\begin{aligned} & .046875 \\ & .0521 \\ & .0573 \end{aligned}$ | $\frac{\frac{7}{6}}{\frac{11}{18}}$ | 12 | $\begin{aligned} & .296875 \\ & .3021 \\ & .3073 \end{aligned}$ | $\begin{aligned} & 3 \% \\ & 35 \\ & 3 \frac{9}{5} \end{aligned}$ | 38 | $\begin{aligned} & .546875 \\ & .5521 \\ & .5573 \end{aligned}$ | $\begin{aligned} & 6 \frac{7}{16} \\ & 65 \\ & 618 \end{aligned}$ | 諸 | $\begin{aligned} & .796875 \\ & .8021 \\ & .8073 \end{aligned}$ | $\begin{aligned} & 9 \frac{7}{16} \\ & 9{ }^{3} / 8 \\ & 9 \frac{18}{16} \end{aligned}$ |
| $1{ }^{1 / 8}$ | $\begin{aligned} & .0625 \\ & .0677 \\ & .0729 \end{aligned}$ | $\begin{aligned} & 3 / 4 \\ & 12 \\ & 1 / 8 \end{aligned}$ | 16 | .3125 .3177 .3229 | $\begin{aligned} & 3 y \\ & 317 \\ & 37 / 8 \end{aligned}$ | 16 | $\begin{aligned} & .5625 \\ & .5677 \\ & .5729 \end{aligned}$ | $\begin{aligned} & 63 / 4 \\ & 61 \frac{1}{16} \\ & 6 \frac{1}{8} \end{aligned}$ | $\frac{17}{16}$ | $\begin{aligned} & .8125 \\ & .8177 \\ & .8229 \end{aligned}$ | $\begin{aligned} & 93 / 4 \\ & 9416 \\ & 9 \frac{16}{3} / 8 \end{aligned}$ |
| 矿 | $\begin{aligned} & .078125 \\ & .0833 \\ & .0885 \end{aligned}$ | $\begin{aligned} & 1_{18}^{16} \\ & 1_{16} \end{aligned}$ | 31 | $\begin{aligned} & .328125 \\ & .3333 \\ & .3385 \end{aligned}$ | $\begin{aligned} & 3 \frac{18}{16} \\ & 4 \\ & 4 \frac{1}{16} \end{aligned}$ | 37 | $\begin{aligned} & .578125 \\ & .5833 \\ & .5885 \end{aligned}$ | $\begin{aligned} & 6 \frac{15}{16} \\ & 7 \frac{1}{16} \end{aligned}$ | 83 | $\begin{aligned} & .828125 \\ & .8333 \\ & .8385 \end{aligned}$ | $\begin{aligned} & 914 \\ & 10^{18} \\ & 10^{\frac{1}{16}} \end{aligned}$ |
| 戍 | 09375 .0990 1042 | $\begin{aligned} & 11 / 8 \\ & 116 \\ & 11 / 4 \end{aligned}$ | 13 | .34375 .3490 .3542 | $\begin{aligned} & 41 / 8 \\ & 4 \frac{18}{16} \\ & 4 \frac{1}{4} \end{aligned}$ | 12 | $\begin{aligned} & .59375 \\ & .5990 \\ & .6042 \end{aligned}$ | $\begin{aligned} & 71 / 8 \\ & 7 \frac{1}{18} \\ & 7 \frac{16}{1 / 4} \end{aligned}$ | $\frac{97}{3}$ | $\begin{aligned} & .84375 \\ & .8490 \\ & .8542 \end{aligned}$ | $\begin{aligned} & 101 / 8 \\ & 10^{276} \\ & 101 / 4 \end{aligned}$ |
| $\frac{7}{81}$ | $\begin{aligned} & .109375 \\ & .1146 \\ & .1198 \end{aligned}$ | $\begin{aligned} & 1 \frac{1}{6} \\ & 1 \frac{3}{8} \\ & 1 \frac{1}{16} \end{aligned}$ | 新 | $\begin{aligned} & .359375 \\ & .3646 \\ & .3698 \end{aligned}$ | $\begin{aligned} & 4 \frac{3}{6} \\ & 4 \frac{1}{6} \\ & 4 \frac{16}{16} \end{aligned}$ | 38 | $\begin{aligned} & .609375 \\ & .6146 \\ & .6198 \end{aligned}$ | $\begin{aligned} & 7 \frac{s}{16} \\ & 7 \frac{1 / 8}{15} \\ & 7 \frac{1}{16} \end{aligned}$ | 憬 | $\begin{aligned} & .859375 \\ & .8646 \\ & .8698 \end{aligned}$ | $\begin{aligned} & 10^{5}{ }^{5} \\ & 10^{3 / 8} \\ & 10^{\frac{1}{16}} \end{aligned}$ |
| 1／8 | $\begin{aligned} & .1250 \\ & .1302 \\ & .1354 \end{aligned}$ | $\begin{aligned} & 11 / 2 \\ & 118 \\ & 13 / 8 \end{aligned}$ | $3 / 6$ | $\begin{array}{r} .3750 \\ .3802 \\ .3854 \end{array}$ | $\begin{aligned} & 41 / 2 \\ & 4 \frac{2}{6} \\ & 4 \% \end{aligned}$ | 5／8 | $\begin{aligned} & .6250 \\ & .6302 \\ & .6354 \end{aligned}$ | $\begin{aligned} & 71 / 2 \\ & 7 \frac{1}{16} \\ & 75 / 8 \end{aligned}$ | 7／8 | $\begin{aligned} & .8750 \\ & .8802 \\ & .8854 \end{aligned}$ | $\begin{aligned} & 101 / 2 \\ & 10 \frac{16}{2} \\ & 10 \% / 8 \end{aligned}$ |
| ${ }^{4}$ | $\begin{aligned} & .140625 \\ & .1458 \\ & .1510 \end{aligned}$ |  | 12 | $\begin{aligned} & .390625 \\ & .3958 \\ & .4010 \end{aligned}$ | $\begin{aligned} & 4 \frac{11}{16} \\ & 4 \frac{12}{4} \\ & 411 \end{aligned}$ | 13 | $\begin{aligned} & .640625 \\ & .6458 \\ & .6510 \end{aligned}$ | $\begin{aligned} & 7 \frac{14}{16} \\ & 7 \\ & 714 \end{aligned}$ | 髪 | $\begin{aligned} & .890625 \\ & .8958 \\ & .9010 \end{aligned}$ | $\begin{aligned} & 10 \frac{1}{t} \\ & 103 \\ & 10 \frac{18}{18} \end{aligned}$ |
| S ${ }^{3}$ | $\begin{aligned} & .15625 \\ & .1615 \\ & .1667 \end{aligned}$ | $\begin{aligned} & 17 / 6 \\ & 1_{2}^{124} \end{aligned}$ | 12 | .40625 .4115 .4167 | $\begin{aligned} & 47 / 8 \\ & 4^{112} \\ & 5 \end{aligned}$ | 313 | $\begin{aligned} & .65625 \\ & .6615 \\ & .6667 \end{aligned}$ | $\begin{aligned} & 77 / 8 \\ & 7118 \\ & 8 \end{aligned}$ | 318 | $\begin{aligned} & .90625 \\ & .9115 \\ & .9167 \end{aligned}$ | $\begin{aligned} & 107 / 8 \\ & 10 \mathrm{f} \\ & 11 \end{aligned}$ |
| 14 | $\begin{aligned} & .171875 \\ & .1771 \\ & .1823 \end{aligned}$ | $\begin{aligned} & 2 \frac{1}{1} \\ & 21 / 8 \\ & 2 \frac{1}{16} \end{aligned}$ | 13 | $\begin{aligned} & .421875 \\ & .4271 \\ & .4323 \end{aligned}$ | $\begin{aligned} & 5 \frac{1}{7} \\ & 51 / 6 \\ & 5 \frac{16}{16} \end{aligned}$ | 41 | $\begin{aligned} & .671875 \\ & .6771 \\ & .6823 \end{aligned}$ | $\begin{aligned} & 8 \frac{1}{16} \\ & 81 / 8 \\ & 8 \frac{18}{18} \end{aligned}$ | 襄 | $\begin{aligned} & .921875 \\ & .9271 \\ & .9323 \end{aligned}$ | $11 \frac{1}{18}$ <br> $111 / 8$ <br> 11 18 |
| $1{ }^{3}$ | $\begin{aligned} & .1875 \\ & .1927 \\ & .1979 \end{aligned}$ | $\begin{aligned} & 21 / 4 \\ & 2 \frac{31}{6} \\ & 2 \frac{3}{8} \end{aligned}$ | IV | $\begin{array}{r} .4375 \\ .4427 \\ .4479 \end{array}$ | $\begin{aligned} & 51 / 4 \\ & 51 / 6 \\ & 5 \frac{1}{3} \end{aligned}$ | $\frac{12}{12}$ | $\begin{array}{r} .6875 \\ . .6927 \\ .6979 \end{array}$ | $\begin{aligned} & 81 / 4 \\ & 81 \frac{1}{6} \\ & 8 \frac{1}{3} \end{aligned}$ | 18 | $\begin{aligned} & .9375 \\ & .9427 \\ & .9479 \end{aligned}$ | 111／4 $11 \frac{1}{16}$ $113 / 3$ |
| 12 | $\begin{aligned} & .203125 \\ & .2083 \\ & .2135 \end{aligned}$ | $\begin{aligned} & 2 \frac{1}{6} \\ & 2 \frac{1}{2} \\ & 2 \frac{1}{16} \end{aligned}$ | 19 | $\begin{aligned} & .453125 \\ & .4583 \\ & .4635 \end{aligned}$ | $\begin{aligned} & 5 \frac{7}{16} \\ & 515 \\ & 5 \frac{15}{15} \end{aligned}$ | 数 | $\begin{aligned} & .703125 \\ & .7083 \\ & .7135 \end{aligned}$ | $\begin{aligned} & 8 \frac{7}{16} \\ & 81 / 2 \\ & 8 \frac{1}{16} \end{aligned}$ | $\frac{11}{6}$ | $\begin{aligned} & .953125 \\ & .9583 \\ & .9635 \end{aligned}$ | $\begin{aligned} & 11 \frac{1}{6} \\ & 11 \\ & \hline 1515 \end{aligned}$ $11 \frac{9}{16}$ |
| 3） | $\begin{aligned} & .21875 \\ & .2240 \\ & .2292 \end{aligned}$ | $\begin{aligned} & 25 / 8 \\ & 2 \frac{16}{4} \\ & 2 \frac{14}{4} \end{aligned}$ | 4 | .46875 .4740 .4792 | $\begin{aligned} & 5 \frac{5 / 7}{3} \\ & 5 \frac{1}{2} \\ & 5 \frac{1}{4} \end{aligned}$ | 紋 | $\begin{aligned} & .71875 \\ & .7240 \\ & .7292 \end{aligned}$ | $\begin{aligned} & 85 / 8 \\ & 816 \\ & 8 \frac{51}{4} \end{aligned}$ | 312 | $\begin{aligned} & .96875 \\ & .9740 \\ & .9792 \end{aligned}$ | $\begin{aligned} & 115 / 8 \\ & 1148 \\ & 11 \% / 4 \end{aligned}$ |
| 11 | $\begin{aligned} & .234375 \\ & .2396 \\ & .2448 \end{aligned}$ | $\begin{aligned} & 2 \frac{13}{2} \\ & 218 \\ & 2118 \end{aligned}$ | $3 \frac{3}{3}$ | $\begin{aligned} & .484375 \\ & .4896 \\ & .4948 \end{aligned}$ | $\begin{aligned} & 5 \frac{11}{6} \\ & 5 \% \\ & 51 \% \end{aligned}$ | 85 | $\begin{aligned} & .734375 \\ & .7396 \\ & .7448 \end{aligned}$ | $\begin{aligned} & 8 \frac{12}{2} \\ & 87 / 8 \\ & 816 \end{aligned}$ | $\frac{13}{2}$ | $\begin{aligned} & .984375 \\ & .9896 \\ & .9948 \end{aligned}$ | $\begin{aligned} & 11 \frac{14}{18} \\ & 11 \% \\ & 11 \frac{11}{18} \end{aligned}$ |
| $1 / 4$ | ． 2500 | 3 | 1／2 | ． 5000 | 6 | $3 / 4$ | .7500 | 9 | 1 | 1.0000 | 12 |



Majestic Coal \& Coke Co. Mine, Duquoin, Illinois.


Heavy Wooden Timbering, Anthracite Mine


Steel Beams laid on Coal and Short Posts


Heavy Steel Timbering, Anthracite Mine


Youghiogheny \& Ohio Coal Co., Florence Mine, Martins Ferry, O.

W. J. Rainey Royal Works Mine, Uniontown, Pa.


Maxwell Colliery 20, Lehigh \& Wilkes-Barre Coal Co., Ashton, Pa.


Honeybrook Colliery 5, Lehigh \& Wilkes-Barre Coal Co., Audenried, Pa.


Moshannon Coal Mining Co., Osceola Mills, Pa.


Pump Room, Plymouth Coal Co., Dodson Colliery

## PRODUCTS

> Blast Furnace Products
> Pig Iron, Ferro-Manganese and Spiegeleisen.
> Open-Hearth and Bessemer Products
> Ingots, Blooms, Billets, Slabs, Sheet Bars,
> Structural Mill Products
> Beams, H-Beams, Channels, Angles, Tees, Zees, Ship and Car Building Sections, Bulb Angles, Steel Sheet Piling and Cross Tie Sections.
> Bar Mill Products
> Beams, Channels, U-Bars, Angles, Tees, Zees, Merchant Bars, Squares, Rounds, Hexagons, Welding and Threading Steel, Spring Steel, Flat Steel, Square, Band and Round Edge, Hoop and Band Steel, Cotton Ties, Tire Steel, Shovel and Saw Blade Steel, Concrete Bars, Rounds and Squares, Cold Twisted Squares, Deformed Bars, Agricultural Sections, Automobile Sections, Window Sections, Miscellaneous Bar Sections.

Alloy Steel for Various Purposes
Plate Mill Products
Sheared Plates and Universal Mill Plates, Checkered Floor Plates and Skelp.

## Rail Mill Products

Standard, Miscellaneous and Light Rails,
Angle Splice Bars and Fish Plates, Steel Cross Ties and Track Accessories.

## Forged and Wrought Products

Axles for Steam, Electric and Industrial Service. Wheels for Steam, Electric and Industrial Service. Wheel and Gear Blanks, Miscellaneous Circular Forgings.

Fabricated Products
Steel Drilling Rigs, Derricks, Accessories,
Steel Mine Timber, Gangway Sets, Steel Sheet Piling.

Coke By-Products
Ammonia Liquor, Ammonium Sulphate, Naphtha, Napthalene, Benzol, Toluol.

Blast Furnace Slag
Crushed, Granular, Sand and Concrete Slag.


This form may be used on inquiries for Steel Mine Timbers, Style F. Additional copies may be secured on application to any district office of the Carnegie Steel Company.


This form may be used on inquiries for Steel Mine Timbers, Style K. Additional copies may be secured on application to any district office of the Carnegie Steel Company.

## CARNEGIE STEEL COMPANY

## OFFICES

## GENERAL OFFICES:

Pittsburgh, Carnegie Building, 434 Fifth Avenue.

## DISTRICT OFFICES:

Birmingham, Brown-Marx Building, 2000 First Avenue, North, Boston, 120 Franklin Street,
Buffalo, The Marine Trust Co. Building, 233-239 Main Street, Chicago, 208 South La Salle Street, Cincinnati, Union Trust Building, Fourth and Walnut Streets, Cleveland, Rockefeller Building, 704 Superior Avenue, N. W., Denver, First National Bank Building, 17th and Stout Streets, Detroit, 2130 Buhl Building, 585 Griswold Street, New Orleans, Maison Blanche, 921 Canal Street, New York, Empire Euilding, 71 Broadway, Philadelphia, Widener Building, Juniper and Chestnut Streets, Pittsburgh, Carnegic Building, 434 Fifth Avenue,
St. Louis, 506 Olive Street,
St. Paul, 1308 Merchants National Bank Building, 4th \& Robert Sts.

## EXPORT REPRESENTATIVES:

 UNITED STATES STEEL PRODUCTS CO. New York, Hudson Terminal, 30 Church Street.PACIFIC COAST REPRESENTATIVES:
UNITED STATES STEEL PRODUCTS CO., PAOIFIC COAST DEPT.
Los Angeles, 2087 Enst Slauson Avenue,
Portland, Selling Building, Sixth and Alder Streets,
San Francisco, Rialto-Building, 116 New Montgomery Street, Seattle, Fourth Avenue South and Connecticut Street.


[^0]:    Safe load values above upper zigzag line are for ratios of $1 / \mathrm{r}$ not over 60 , those between the zigzag line are for ratios up to $120 \mathrm{l} / \mathrm{r}$ and those below lower zigzag line are for ratios not over $200 \mathrm{l} / \mathrm{r}$.

