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INTRODUCTION 
In the companion paper (White and Jung 2003a), the authors develop and discuss the 

advantages of a recommended set of equations for the elastic lateral-torsional buckling (LTB) 
resistance of I- and channel-section members.  These equations are utilized as the base elastic 
LTB expressions within the AASHTO (2004) and AISC (2005) Specifications.  White and Jung 
(2003a) focus on the characteristics of the recommended equations pertaining to doubly-
symmetric I-section members and channels.  This paper extends these developments to singly-
symmetric I-section members, including composite I-sections in negative bending and channel-
capped I-sections.  Two approaches are highlighted for calculation of the elastic LTB resistance 
of these general member types:  

1. Ad hoc application of the doubly-symmetric equations recommended in (White and Jung 
2003a), similar to the approach taken in AASHTO (1998) using an alternative set of LTB 
equations for doubly-symmetric I-section members.   

2. A simplified form of the rigorous equations obtained from open-walled section beam theory.   

A key advantage of the first approach is that it leads to a single set of equations for all I-section 
members and channels.  Also, these equations are simpler to apply than the rigorous beam theory 
equations for general I-shapes.  As noted in (White and Jung 2003a) and demonstrated in this 
paper, the recommended doubly-symmetric equations give an improved approximation of the 
rigorous beam theory solution for singly-symmetric I-section members compared to the 
AASHTO (1998) equations.  Also, as explained in this paper, these equations can be applied as a 
conservative but typically adequate approximation of the elastic LTB resistance for composite I-
section members in negative bending.  The main disadvantage of the first approach is that it is 
not rigorous.  In as such, the behavior of the equations must be studied parametrically to ensure 
that they predict the physical strengths adequately for all practical singly-symmetric geometries. 
Any ranges of parameters that produce unacceptable error must be disallowed.   

 The key advantage of the second approach is that an exact or a highly accurate 
approximation of the beam theory LTB resistance is obtained.  The primary disadvantage of this 
approach is that the equations are more complex.  Also, their extension to the handling of 
composite I-girders in negative bending is not as straightforward.   

CONTEXT 

The LTB provisions in AASHTO (1998 and 2004) and AISC (1999 and 2005) are based on 
the logic of identifying the two anchor points shown in Fig. 1 for the base case of uniform major-
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axis bending.  Anchor point 1 is located at the length Lb = Lp corresponding to development of 
the maximum potential flexural resistance under uniform major-axis bending (labeled as the 
compression flange stress Fmax or the bending moment Mmax in the figure).  Anchor point 2 is 
located at the smallest length Lb = Lr for which the LTB strength is governed by elastic buckling.  
The corresponding base moment and compression flange elastic stress levels are denoted in this 
paper by the symbols Myr and Fyr, where Myr = Fyr Sxc and Fyr is the compression flange flexural 
stress corresponding to the nominal onset of yielding within the cross-section (in tension or 
compression), including compression flange residual stress effects.  The equivalent terms in 
AISC (1999) are represented by the symbols FL and Mr.  The parameter Lr is obtained generally 
as the length associated with elastic buckling at a compression flange major-axis bending stress 
of Fcr = Fyr.  The anchor points in Fig. 1 subdivide the LTB problem into three regions, the 
“compact” or “plastic buckling” region, the “noncompact” or “inelastic buckling” region, and the 
“slender” or “elastic buckling” region.  This is a powerful approach for quantifying the general 
LTB resistance in that it facilitates the handling of a number of complex issues for general cross-
sections.  This approach is the framework for the discussion of the elastic LTB equations in this 
paper. 
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Figure 1.  Basic form of the LTB provisions in AASHTO (1998 and 2004) and AISC (1999 and 
2005) corresponding to uniform major-axis bending (Cb = 1). 

ORGANIZATION 

This paper first summarizes the basic doubly-symmetric LTB equations from AASHTO 
(1998) and from (White and Jung 2003a) as well as the exact beam theory equations for a 
general singly-symmetric noncomposite member.  Next, a simplified form of the rigorous 
solution for the LTB resistance of a noncomposite singly-symmetric I-section member is 
suggested, and a minor change is proposed to an approximate equation for a key coefficient 
pertaining to the cross-section monosymmetry for rectangular-flange members.  In AISC (1999), 
no explicit Lr equation is provided for singly-symmetric I-section members.   As a result, 
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engineers have often assumed that Lr must be calculated iteratively.   To address this problem, an 
explicit expression for Lr is derived based on the above rigorous LTB solution.      

The paper then compares the suggested rigorous beam theory expression for the LTB 
resistance to the equation employed in AISC (1999), and also to a special form of the LTB  
equations in which the strength is written in the form of Euler’s equation for the column buckling 
stress using an equivalent radius of gyration rE.  Although this later form does not result in any 
significant simplification of the LTB calculations, it facilitates the understanding of the radius of 
gyration parameter rt employed within the suggested doubly-symmetric LTB equations.   
The paper devotes one section to an explanation of the relationships between rE and rt for a 
general singly-symmetric I-section.  Lastly, the rigorous beam theory equations are considered in 
the limit that J (or JLb

2) is taken equal to zero.  As explained in the companion paper, this 
assumption is invoked commonly for slender-web I-section members and in considering the 
idealized behavior at Lb = Lp.   

Given the above equations, a primary contribution of the paper is the evaluation of the 
accuracy of: (1) the doubly-symmetric equations from AASHTO (1998), (2) the doubly-
symmetric equations recommended by White and Jung (2003a) and (3) the rigorous form of the 
singly-symmetric equations suggested in this paper, for a comprehensive practical range of 
singly-symmetric rectangular-flange I-sections.  Comparisons are made to the exact solutions 
from open-walled section beam theory.    

The paper concludes with a summary assessment of the two recommended approaches for 
quantifying the elastic LTB resistance of general I-section members.  The rationale for the ad hoc 
application of the doubly-symmetric equations to composite I-girders in negative bending and to 
channel-capped I-sections is explained and several specific examples are presented.  Limits are 
suggested for the applicability of the recommended equations. 

The influence of web distortion on the LTB strength, and the corresponding implications 
relative to the use of beam-theory based formulae, are addressed by White and Jung (2003b).  

AASHTO (1998) AND RECOMMENDED EQUATIONS FOR Fcr –                       
DOUBLY-SYMMETRIC I-SECTION MEMBERS 

The AASHTO LRFD (1998) Specifications utilize the following formula to quantify the 
elastic LTB strength of noncomposite I-beams and girders with compact and noncompact webs, 
and as well as the strength of noncomposite girders with longitudinally-stiffened webs: 
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This equation is exact only for doubly-symmetric I-section members; however, it is also utilized 
in the AASHTO Specifications for singly-symmetric sections.  The commentary of these 
Specifications states that Eq. (1) gives predictions within approximately 10 percent of the results 
from the singly-symmetric I-section LTB equations in AISC (1999).    

Although Eq. (1) performs reasonably well for a large number of practical singly-symmetric 
I-shapes, it exhibits significant errors relative to the rigorous beam theory strengths in certain 
cases.  This is in part due to the fact that if the above equation is used, changes in the size of the 
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tension flange and web influence the LTB strength only through the terms h and J.  An 
alternative simple equation that exhibits better accuracy than Eq. (1), and which has a number of 
other advantages relative to the AASHTO (1998) equation, is (White and Jung 2003a)  

 2
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This is a useful form of the fundamental elastic LTB resistance for a doubly-symmetric I-shape, 
expressed in terms of the flange vertical bending stress.  All of the variables in this equation are 
well known in terms of their physical significance, and are readily available or easily calculated 
during the design process.  If the approximation d ≅ h ≅ D is invoked, Eq. (3) reduces to the 
radius of gyration of the compression flange plus one-third of the area of the web in 
compression.  However, White and Jung (2003a) recommend the direct use of Eq. (3) with Eq. 
(2), since Eq. (2) is exact for all practical purposes in this case whereas the above approximation 
is more than 10 percent conservative for some of the heaviest column-type W sections.  Equation 
(2) shows that the fundamental elastic LTB strength is simply a function of the elastic modulus 

E, the slenderness Lb/rt, the ratio of the torsional and major-axis bending efficiencies 
hS

J

xc
, and 

the moment gradient modifier Cb.  Also, when the second term under the radical is small relative 
to one, Eq. (2) reduces to the form 

2
tb

2
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=  (4) 

  If Eq. (2) is used for the elastic LTB strength, this expression can be equated to Fyr for the 
case of uniform major-axis bending (Cb = 1) and solved for the root of the resulting quadratic 
equation for 2

rL  (i.e., a quartic equation for Lr) to obtain  
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whereas for slender-web I-sections, in which J is taken as zero, the result based on Eq. (4) is 
simply 

yr
t)0J(r F

ErL π==  (6) 
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It should be noted that although Eq. (5) is a relatively long equation involving embedded 

square root operations, the variables in this equation are few in number (
yrF
E , 

J
hSxc and rt) and 

are easily calculated or are readily available within the design process.  Also, Lr is directly 
proportional to rt.  White and Jung (2003a) show that rt is the radius of gyration that is most 
fundamental to the LTB of I-section members.  The variable rt does not appear in Eq. (1).  

EXACT OPEN-WALLED SECTION BEAM-THEORY EQUATIONS FOR Mcr –  
SINGLY-SYMMETRIC I-SECTION MEMBERS 

A wide variety of different equations for the elastic LTB resistance have been considered in 
past research and Specification development activities.  Many of the early developments are 
summarized by Clark and Hill (1960).  These authors specify a general form for the theoretical 
elastic LTB resistance based on open-walled section beam theory, including the influence of 
cross-section monosymmetry, moment gradient, end-restraint conditions, and load height effects.  
(SSRC 1998) gives a general elastic LTB equation that is closely related to the one specified by 
Clark and Hill (1960), but in which the load height and moment gradient effects are handled with 
a single modification factor, denoted by the symbol Cb, and in which the monosymmetry 
characteristics are captured using a single parameter represented by the term βx.  For a general 
singly-symmetric member where the bending is in the plane of symmetry, the open-walled 
section beam theory solution for the elastic critical moment is expressed in (SSRC 1998) as  
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where βx is the coefficient of monosymmetry (discussed below), and Ky and Kz are the effective 
length factors associated with end lateral and warping restraints respectively.   

For a general singly-symmetric I-section as shown in Fig. 2, the key variables associated with 
Eq. (7) are as follows.  The depth between the centroids of the flanges is expressed as 

2
ttDh fcft ++=  (8) 

the distance from the centroid of the compression flange to the elastic neutral axis is  
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and the depth of the web in compression is 

Dc = hc – tfc/2 (10) 

The term  

yo = −hc + αh (11) 
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is the distance from the cross-section neutral axis to the shear center, negative if the larger flange 
is in compression, i.e., negative when the shear center lies between the centroid and the 
compression flange, as shown in Fig. 2.  Also, the term α in Eq. (11) may be expressed as  
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where 

12
bt

I
3
fcfc

yc = ,    
12
bt

I
3
ftft

yt =  (13) 

and the general warping constant for a singly-symmetric I-shape is given by 
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Figure 2.  Cross-section dimensional terms for a singly-symmetric I-shape.  

After hc is determined using Eq. (9), the moment of inertia about the major-axis may be written 
as 
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whereas the moment of inertia about the minor-axis is given by 

ytycy III +=  + Dtw
3/12 (16) 
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The St. Venant torsion constant is expressed within the solutions considered in this paper as  
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The two bracketed terms within this equation account for the reduced torsional efficiency of 
stocky rectangular flanges relative to the ideal contribution bftf

3/3.  These terms give a highly 
accurate fit to refined solutions from elasticity theory, i.e., to solutions based on the membrane 
analogy.  As can be observed from Eq. (17), the flange contributions are reduced relative to the 
ideal bftf

3/3 values by more than 10 percent for sections with highly-stocky flanges. ElDarwish 
and Johnson (1965) suggest an equivalent expression to Eq. (17), but also provide a term that 
accounts for the beneficial “bubble” in the analogous membrane at the web-flange juncture, 
including the influence of web-to-flange fillets.  The effect of this term is generally smaller than 
the bracketed terms in Eq. (17), and for sections with relatively thick flanges and thin webs, it is 
negligible.    

The general equation for the coefficient of monosymmetry is defined as  
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If this equation is integrated exactly for a rectangular-flange I-shape, neglecting the web-flange 
weld geometry or fillets, βx is obtained as  
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(SSRC 1998) gives the following simplified form of this equation (after the correction of a minor 
typographical error): 
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Also, (SSRC 1998) lists the following approximate equation for βx from Kitipornchai and 
Trahair (1980): 
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The Engineer should note that for this equation to correctly reduce to βx = 0 in the limit that the 
cross-section is doubly-symmetric, Iy must be interpreted as Iyc + Iyt.   

For typical beam-type I-sections (e.g., d/bfc and d/bft both greater than about 1.7), the last 
bracketed term in Eq. (18d) is for all practical purposes equal to 1.0.   Based on this assumption, 
and making the substitution Iy = Iyc + Iyt, Eq. (18d) can be written as  
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AS4100 (SAA 1998) suggests an equation that is equivalent to Eq. (18e) but with a constant of 
0.8 instead of 0.9.  The coefficient of 0.8 is based on the use of an assumed upper-bound value 
for Iy/Ix of 1/3, which is representative of column-type I-sections with a width of both flanges 
approximately equal to the section depth.  For beam-type I-sections, Iy/Ix is typically on the order 
of 0.1 and Eq. (18e) is a better approximation.  The specific nature of the approximation by Eq. 
(18e) is investigated for a wide range of I-sections subsequently in this paper. 

SIMPLIFIED FORM OF THE EXACT OPEN-WALLED SECTION                                  
BEAM-THEORY EQUATIONS 

The authors recommend the following based on the above developments.  Engineers often 
consider it impractical to evaluate the effective length factors Ky and Kz in Eq. (7), and in many 
situations, the unbraced lengths are not sufficiently large to merit these calculations (i.e., the 
calculated inelastic LTB strengths are affected little by including Ky and Kz).   Therefore, it is 
suggested that Eq. (7) should be expressed in the context of Specification provisions by replacing 

KyLb and KzLb with Lb.  After substitution of 
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terms, Eq. (7) can be written in the form 
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As noted previously for Eq. (7), this equation is a general form that is applicable for any singly-
symmetric section bent about an axis perpendicular to the plane of symmetry.  

The authors recommend the use of Eq. (18e) for hand-calculation of βx, although the exact 
form of Eq. (18b) could certainly be programmed without difficulty.  The errors associated with 
the use of Eq. (18e) are evaluated subsequently, and are found to be acceptable.  Equations (14), 
(16), and (17) are recommended for the calculation of Cw, Iy and J respectively.  It is suggested 
that Eq. (19) is simpler and more intuitive than the formula utilized in Appendix F1 of AISC 

(1999).  The term 2
b

y
2

L
EIπ

 is of course the flexural buckling strength of the member as a column 

about the axis of symmetry, the term βx gives a fundamental characterization of the lack of 
symmetry about the major-axis of bending, including the shift in the section shear center, the 
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term 
y

w

I
C  can be interpreted as the ratio of the cross-section warping and minor-axis flexural 

bending efficiencies, and the product of the terms 
ywy

w

I
J

C
J

I
C

=  is the ratio of the St. Venant 

torsion and minor-axis flexural bending efficiencies.  

(SSRC 1998) recommends a useful design-based procedure for calculation of LTB effective 
length factors that accounts for the continuity with adjacent unbraced segments.  This procedure 
is reasonably easy to apply, and in extraordinary circumstances (e.g., large unbraced lengths 
associated with elastic LTB during construction), it can give a substantially larger but typically 
conservative representation of the physical strength. This procedure was originally proposed by 
Nethercot and Trahair (1976), and involves the assumption that the lateral and warping restraints 
are identical and the calculation of an elastic effective length factor K = Ky = Kz based on an 
analogy with the behavior of end-restrained columns.  White and Chang (2005) present a 
generalization of the (SSRC 1998; Nethercot and Trahair 1976) procedure that addresses singly-
symmetric I-shapes and composite I-sections in negative bending.  If this or other procedures are 
used to calculate the LTB effective length factors, the term KLb can be substituted for Lb in Eq. 
(19).  

By equating Eq. (19) to the moment Myr = FyrSxc and taking Cb = 1 corresponding to the 
uniform bending case, this equation can be solved explicitly for the corresponding value of        
Lb  = Lr.  The resulting equation is first rewritten as an expression for 2

rL , which can be replaced 
conveniently by an arbitrary symbol, say X.   The root of this quadratic equation is 
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which then gives 
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Equation (21) is an exact closed-form equation for the noncompact bracing limit Lr (i.e., anchor 
point 2 of Fig. 1) based directly on open-walled section beam theory.  

APPROXIMATION FOR Mcr IN AISC (1999) 

When Ky = Kz = K, Eq. (7) also may be written as (Trahair 1977) 
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Upon substituting Eq. (18e) for βx, use of G = E/2.6 and assuming K = 1, Eq. (23) becomes 
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This equation is specified in AISC (1999) with the exception that the coefficient of 2.28 is 
written as 2.25.  Also, the Engineer should note that Iyc/Iy should be taken as Iyc /(Iyc + Iyt)  for 
Eq. (22) to give the same result as Eqs. (1) and (2) in the limit that a section is doubly-
symmetric.  

Furthermore, by substituting Eq. (14) for Cw and by use of the approximation 
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Eq. (24) can be written as 
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This equation is specified in AISC (1999) except that the coefficient of 25.7 is written as 25.  
Obviously, although the above expressions for B1 and B2 are appropriate algebraic 
simplifications, the physical significance of these terms within the context of Eq. (22) is 
somewhat difficult to understand.  The authors prefer Eq. (19), which involves the direct use of 
the coefficient of monosymmetry βx.   

Mcr IN TERMS OF AN EQUIVALENT RADIUS OF GYRATION rE 

It is interesting to consider the equivalent radius of gyration obtained by equating the elastic 
buckling stress to Euler’s column buckling equation (modified by Cb), i.e.,  

2

E

b

2
b2

b
wy

w
2

xx
2
b

y
2

xc

b

xc

cr
cr

r
L

EC
L

C
J0390.01

I
C

22L

EI
S
C

S
M

F

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

π
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
++⎟

⎠

⎞
⎜
⎝

⎛ β+
βπ

==  (28) 



 11

If this equation is solved for 2
Er , the result is 
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Based on this equivalent radius of gyration, the elastic critical moment may be expressed as 

xc2
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b

2
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π
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or the elastic critical flange stress may be written as 
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At first blush, this appears to be a dramatic simplification.  However, this development is 
somewhat deceiving since the expression for rE also contains the length Lb.  The physical beam 
LTB behavior does not in general map all that well to the column elastic buckling equation.  
Therefore, the authors prefer the form given by Eq. (19).  

GENERAL RELATIONSHIP BETWEEN rE AND rt 
 
Equation (29) is useful for gaining a better understanding of several attributes of the elastic 

LTB equations.  For instance, a common practice is to neglect the contribution from St. Venant 
torsion to the elastic LTB resistance in certain cases, or in other words, to assume JLb

2 = 0 in 
determining the elastic LTB strength.  This assumption is invoked commonly for slender-web    
I-girders, partly since flange raking and the associated web distortion are more likely as the web 
slenderness becomes large.  Also, this assumption is often invoked in the development of 
equations for the length Lp corresponding to anchor point 1 in Fig. 1, since JLb

2 in Eq. (28) 
becomes negligible for the short unsupported lengths associated with Lb = Lp (White and Jung 
2003a).  By taking JLb

2 = 0, Eq. (29) can be written as 
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In the limit that an I-shape becomes doubly symmetric, the monosymmetry parameter βx 
approaches zero.  Therefore, for the special case of a doubly-symmetric I-section, Eq. (31) 
reduces to 
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x

yw2
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b
=

=
 (32) 

White and Jung (2003a) show that this is the exact expression for 2
tr  in Eq. (2).  That is,  

substitution of Eq. (32) for 2
tr  in Eq. (2) gives the exact solution for the elastic LTB resistance of 

a doubly-symmetric I-section member.  Also, they show that Eq. (3) gives a close approximation 
of the exact rt for doubly-symmetric I-shapes.  In the context of this paper, it is important to note 
that Eq. (3) also gives an accurate approximation of 

)0JL(E 2
b

r
=

from Eq. (31) for singly-symmetric 

I-sections.  This result is demonstrated subsequently.  Therefore, Eq. (3) may be used as an 
accurate general expression for rt for all I-shapes.  This result leads to the fact that Eqs. (2) and 
(5) can be applied with good accuracy to determine the elastic LTB strength for a wide range of 
singly-symmetric I-section members.  Equation (32) is valid only for doubly-symmetric I-shapes 
and channels.   

It is emphasized that for a doubly-symmetric I-section, Awc = Dctw = Dtw/2 in Eq. (3);  
however, for a singly-symmetric I-shape, Awc = Dctw ≠ Dtw/2 in this equation.  This extension of  
Eq. (3) is ad hoc.  However, it works well as demonstrated in the following sections.  Equation 
(3) is utilized for rt to generate the results associated with Eq. (2) shown in this paper.  Equation 
(3) simplifies to the traditional equation for the radius of gyration of the compression flange plus 
a third of the compressed portion of the web by taking D = h = d and neglecting the web-to-

flange fillet areas, or if one considers that the product of the terms 
hd
D2

 < 1 and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

wc

fillet

A
A61  > 1 

is approximately equal to one (White and Jung 2003a).   

SPECIALIZATION OF THE EXACT OPEN-WALLED SECTION BEAM-THEORY 
EQUATIONS TO SLENDER WEB I-GIRDERS 

If Eq. (19) is applied to slender-web I-sections, where J is taken equal to zero since 
significant flange raking and the associated web distortions are more likely, the elastic LTB 
strength simplifies to   
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By recognizing the relationship for 2
)0JL(E 2

b
r

=
 given by Eq. (31), Eq. (33) can be expressed in the 

form 
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In addition, based on the accurate approximation that Eq. (3) provides in general for 
)0JL(E 2

b
r

=
, this 

equation may be converted to 
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Also, the equivalent of Eq. (21) becomes 
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or based on Eq. (31) and the observations discussed in the previous section,  
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b
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==  (37) 

It can be observed that Eq. (35) takes the form of Euler’s column buckling equation, modified by 
Cb, corresponding to an equivalent column composed of the compression flange plus a fraction 
of the compression area of the web.  By calculating rt including a portion of the web area, the 
effect of the web on the compression flange lateral stability is captured.  In prior Specifications, 
it is not uncommon for Eq. (35) to be stated using the radius of gyration of the compression 
flange alone, ryc (e.g., the elastic LTB strength of noncomposite slender-web I-girders is 
expressed in this fashion in AASHTO (1998)).  It should be noted that if the radius of gyration of 
the compression flange alone (ryc =  bfc /√12) is utilized in Eq. (35), the elastic LTB strength of 
the idealized girder (with J = 0) is generally overestimated.  Furthermore, if ryc is used in Eq. (35) 
instead of rt, Fcr becomes independent of the proportions of the web and tension flange.   

EVALUATION OF SIMPLIFIED LTB EQUATIONS FOR COMPACT AND 
NONCOMPACT-WEB I-SECTION MEMBERS VERSUS EXACT BEAM-THEORY 

This section compares the results from the following elastic LTB expressions developed in 
the previous sections to the exact beam theory based solution from Eq. (19) with βx given by the 
exact integration of Eq. (18a), i.e., using Eq. (18b): 

1. The elastic LTB solution obtained using the rigorous Eq. (19), but with the simple 
approximate equation for βx given by Eq. (18e),  

2. The Iyc-based formula specified in AASHTO (1998), Eq. (1), and 

3. The suggested rt-based formula, Eq. (2), with rt calculated using Eq. (3)1. 

All of the solutions within the parametric study are for the base case of uniform major axis 
bending, i.e., Cb = 1.0.    
                                                 
1 All the calculations are conducted assuming welded I-sections; therefore, Afillet is taken equal to zero. 
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Design of the Parametric Study 
To compare the above equations in a reasonably comprehensive fashion while avoiding 

absurd or impractical cross-section geometries, the following ranges of the cross-section 
nondimensional variables are selected.  The ratio of the web depth to the tension flange width is 
varied over the range  

1 < D/bft < 10 

and similarly, the range of the web depth to the compression flange width is taken as 

1 < D/bfc < 6 

The value of one is considered to be a lower-bound practical limit for the above ratios, since for 
smaller values the corresponding flange is wider than the web is deep.  The limit of D/bfc = 6 is 
selected in the development of the updated AASHTO (2004) provisions based on the fact that the 
limited number of experimental tests with larger D/bfc values tend to have a wide scatter in the 
measured strengths compared to predictions, with the measured strengths in a significant number 
of cases being quite low  (White and Jung 2004; White and Kim 2004; White et al. 2004).  The 
limit of D/bft = 10 is selected as a practical upper limit for the web depth to tension flange width 
based on judgment.  

Also, bounds of one and six are established for the ranges of tfc/tw and tft/tw, i.e.,  

1 < tfc/tw < 6 and 1 < tft/tw < 6  

and the upper bound for the web slenderness is taken as 

2Dc/tw < 140 

The bound of 2Dc/tw = 140 is approximately the noncompact-web limit 
yF

E7.5  for Fy = 50 ksi 

(345 MPa) whereas the above restrictions on the flange-to-web thickness are considered as 
reasonable practical limits.  That is, the web should not be thicker than the flanges and the 
flanges should not be excessively thick compared to the web.  The value of six for the upper-
bound on tfc/tw and tft/tw corresponds to a hypothetical bridge I-girder with a 0.5 in (12.7 mm) 
thick web and a 3 in (76.2 mm) thick flange, or a 0.75 in (19.1 mm) thick web with a 4.5 in 
(114.3 mm) thick flange, or a hypothetical metal building I-section member with a 3/16 in (4.76 
mm) web and a 1.125 in (28.6 mm) thick flange.  Special considerations are typically necessary 
to weld flanges and webs that have this large of a disparity in their thicknesses.  Also, sections 
with larger flange-to-web thickness ratios will tend to have slender webs.  No limits are imposed 
on tfc/tw and tft/tw in the subsequent slender-web member studies. 

Within the above limits, all combinations and permutations of the following specific cross-
section dimensional ratios are considered: 

 
bfc/tfc = 5, 10, 15 and 24 
bft/tft = 5, 10, 15 and 24 
D/bfc = 1, 2, 3, and 6 
D/tw = 5, 10, 40, 90, 140 and 190 
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The smaller values of five for bfc/tfc and bft/tft are approximate lower-bound values for the flange 
total width-to-thickness ratios for rolled I-shapes (there are a few wide-flange sections that have 
bf/tf values between 3.6 and 5.0).  Also, the smaller value of five for D/tw is approximately a 
lower-bound of the web width-to-thickness ratio for rolled I-shapes (there a few wide-flange 
sections that have D/tw values between 3.7 and 5.0).  It is anticipated that engineers typically 
would not use plates that are this stocky for singly-symmetric I-section members, since it is 
likely that better economy can be obtained with more slender plates; nevertheless, these values 
are selected to test the limits of the suggested equations.  The previously stated limits on D/bfc, 
D/bft, tfc/tw, and tft/tw often preclude the use of the smallest and largest D/tw values listed above.  
In these cases, the bounds on D/tw are established based on these limits.  The value of D/tw = 190 
is selected as an upper-bound beyond which it is difficult to fabricate a singly-symmetric I-shape 
such that 2Dc/tw < 140.  The largest value of bfc/tfc and bft/tft = 24 is the limit placed on the width-
to-thickness of the flanges of I-shapes in AASHTO (1998 and 2004) to alleviate potential 
welding distortion problems.   

For each specific combination of the dimensional ratios from the above lists, D/bft is varied 
to produce equal increments of Iyc/(Iyc + Iyt) ≅ 0.1 within the above maximum and minimum 
limits on D/bft, D/bfc, tfc/tw, tft/tw and 2Dc/tw.  Additional values of Iyc/(Iyc + Iyt) are considered for 
a number of the cross-sections that produce near maximum conservative or unconservative 
differences between the simplified equations and the exact beam theory solutions.  The total 
number of cross-sections studied is 1630.   

In addition to the above cross-section variables, the solutions are also a function of the 
unsupported length Lb.  Based on the observation that the differences between the results of the 
simplified equations and the exact beam theory solutions vary in a monotonic fashion as a 
function of Lb, two values are considered for this parameter: 

• Lb = Lr, and 

• Lb = max(85bfc, Lr) 

where Lr is calculated from Eq. (5) using Fyr = 0.7Fy and Fy = 50 ksi (345 MPa).   The value of 
Fyr = 0.7Fy is specified in AASHTO (2004) and AISC (2005) for doubly-symmetric nonhybrid I-
shapes, and is also applicable to singly-symmetric and hybrid I-sections in most cases.   The 
yield strength is maintained at Fy = 50 ksi (345MPa) throughout the studies.  The differences 
between the approximate and rigorous equations are generally smaller for larger yield strengths. 

The length Lb = Lr is the smallest value of Lb for which the elastic LTB equations are 
employed directly within the approach shown in Fig. 1.   The length Lb = 85bfc is a practical 
upper-bound for the unbraced length.  This value is suggested for the maximum length of a 
shipping piece in AASHTO (1998 and 2004).  For a few of sections with D/bfc = 1 and/or D/bft 
close to 1.0 and with stocky flanges, 85bfc is smaller than Lr.  In these cases, Lb = Lr is used since 
Lr is the abscissa of anchor point 2 in Fig. 1.  The Lr/rt values range from 91 to 785, the Lr/bfc 
values range from 18 to 155 and the Lr/D values range from three to 119 for the complete set of 
cross-sections considered.  The max(85bfc, Lr)/rt values range from 276 to 785, the max(85bfc, 
Lr)/bfc values range from 85 to 155 and th max(85bfc, Lr)/D values range from 14 to 119 for the 
complete set of cross-sections.  
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Discussion of Results  
Figure 3 shows the ratio of the elastic LTB strengths obtained using the suggested exact form 

of the open-walled section beam theory equations, Eq. (19), with the simplified approximate 
expression for the cross-section monosymmetry parameter βx given by Eq. (18e).  The results in 
this figure are based on Lb = Lr.  The error in the resulting solutions ranges from six percent 
unconservative to five percent conservative for Iyc/(Iyc + Iyt) ranging from 0.1 to 0.9.   The 
accuracy for Lb = max (85bfc, Lr) is better, with the largest errors relative to the exact beam 
theory solution being four percent unconservative to three percent conservative.  Based on these 
results, it may be concluded that Eq. (18e) is an acceptable expression for βx.   

 
Figure 3. Ratio of the strength predicted by suggested form of the singly-symmetric LTB 

equation for Fcr, with Eq. (18e) used for βx, to the exact beam theory elastic LTB solution, all 
compact- or noncompact-web sections with Lb = Lr, Lr based on Fyr = 0.7Fy and Fy = 50 ksi    

(345 MPa), Cb = 1.                                

Figures 4 and 5 show the predictions by the AASHTO (1998) Iyc-based formula, Eq. (1), and 
by the suggested rt-based formula, Eq. (2).   These results are for Lb = max(85bfc, Lr).  If  Lb is 
taken as Lr, the errors relative to the exact beam theory solutions are smaller.  One can observe 
that the prediction of the exact beam theory strengths by these equations is in general rather poor.  
The errors associated with the Iyc-based formula range from 50 percent conservative to 27 
percent unconservative whereas the rt-based formula produces errors from 47 percent 
conservative to 20 percent unconservative for Iyc/(Iyc + Iyt) ranging from 0.1 to 0.9.  Therefore, 
assuming that 20 or 27 percent unconservative error is unacceptable, it is clear that some 
restrictions on the use of these equations are necessary beyond the practical limits selected for 
the parametric study.  The following general trends are evident in Figs. 4 and 5: 
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Figure 4.  Ratio of strength predicted by Iyc-based LTB equation                                                   

to the exact beam theory elastic LTB solution, all compact- or noncompact-web sections,                              
Lb = max(85bfc, Lr), Lr based on Fyr = 0.7Fy and Fy = 50 ksi (345 MPa), Cb = 1. 

 
Figure 5. Ratio of strength predicted by rt-based LTB equation                                                    

to the exact beam theory elastic LTB solution, all compact- or noncompact-web sections,                               
Lb = max(85bfc, Lr), Lr based on Fyr = 0.7Fy and Fy = 50 ksi (345 MPa), Cb = 1. 
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• The doubly-symmetric equations tend to give their most unconservative predictions relative 
to the exact beam theory results at large Iyc/(Iyc + Iyt), i.e., for cross-sections with a larger 
compression flange.  If 10 percent unconservative error relative to the exact beam theory 
solution is selected as a maximum acceptable limit, the use of Eqs. (1) and (2) must be 
restricted in general to Iyc/(Iyc + Iyt) <  0.6 (i.e., Iyc/Iyt < 1.5).   

• The doubly-symmetric equations tend to be most conservative relative to the exact beam 
theory solution for small Iyc/(Iyc + Iyt), i.e., for cross-sections with the smaller flange in 
compression.  If 20 percent conservative error is selected as a maximum acceptable limit, the 
use of Eqs. (1) and (2) must be restricted in general to Iyc/(Iyc + Iyt) > 0.3 (i.e., Iyc/Iyt = 0.43).   

The largest errors in Eqs. (1) and (2) with respect to the exact beam theory solution occur for 
shallow-depth members (small D/bf) with stocky plate elements (small bfc/tfc, bft/tft and D/tw).  
Figures 6 and 7 show the results at Lb = Lr if the minimum D/bfc and D/bft values are limited to 
two, and the minimum width-to-thickness ratio of the tension flange is limited to bft/tft = 10 (i.e., 
bft/2tft > 5).  These restrictions are believed to be practical for a large number of bridge I-girders 
as well as singly-symmetric I-section members used in steel building construction.  Given these 
restrictions, the Iyc-based formula ranges from 16 percent conservative to 14 percent 
unconservative for 0.1 < Iyc/(Iyc + Iyt) < 0.9.  However, the suggested rt-based equation (Eq. (2)) 
gives errors that are only a maximum of two percent unconservative to 12 percent conservative 
relative to the exact beam theory results.  

The errors relative to the exact beam theory solution are somewhat larger if plots comparable 
to Figs. 6 and 7 are considered but with Lb = max(85bfc, Lr) (not shown).  In this case, the errors 
in the Iyc formula range from -37 to +21 percent, with the positive sign indicating an over-
prediction of the theoretical results.  However, the rt-based formula gives errors from -35 to only 
+9 percent.  Given the tendency of web distortion to reduce the strength of members with the 
smaller flange in compression, the conservative nature of the rt formula for small Iyc/(Iyc + Iyt) is 
considered to be acceptable.  The reduction in the LTB strength due to web distortion is 
addressed by White and Jung (2003b).  

Figure 8 is a repeat of Fig. 5 in which J is reduced by 20 percent for I-shapes with Iyc/Iyt > 1.5 
whenever D/bfc < 2, D/bft < 2, or bft/tft < 10.  The resulting maximum unconservative error 
relative to the exact beam theory strengths is nine percent.  Although the above reduction in J 
results in a discontinuity in the predicted strengths at Iyc/Iyt = 1.5, this discontinuity is within the 
range of the errors exhibited by the rt-based equation relative to the exact beam theory solutions.   

Lastly, Fig. 9 shows the correlation between rt given by Eq. (3) and 2
)0JL(E 2

b
r

=
given by Eq. (31).  

The maximum unconservative difference between these two variables is four percent and the 
maximum conservative difference is 14 percent for Iyc/(Iyc + Iyt) from 0.1 to 0.9. 

COMPARISON OF FORMULAE BASED ON J = 0 

This section compares the results from the suggested rt-based equation to the results from the 
direct open-walled section beam theory solution when the St. Venant torsional constant is taken 
equal to zero, i.e., Eq. (4) versus Eq. (33).   The same limits on the cross-section parameters are 
employed in this study as in the previous one, except that 2Dc/tw is limited to a maximum of 280 
and a minimum of 90, specific values of 90, 140 and 280 are specified for D/tw, and no 
maximum limits are placed on tfc/tw and tft/tw.  The value of 2Dc/tw = 280 is close to the  
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Figure 6.  Ratio of strength predicted by Iyc-based LTB equation to the exact beam theory                              
elastic LTB solution, compact- and noncompact-web sections with D/bfc > 2, D/bft > 2 and      

bft/tft > 10, Lb = Lr, Lr based on Fyr = 0.7Fy and Fy = 50 ksi (345 MPa), Cb = 1. 
 

 
Figure 7.  Ratio of strength predicted by rt-based LTB equation to the exact beam theory                                

elastic LTB solution, compact- and noncompact-web sections with D/bfc > 2, D/bft > 2 and      
bft/tft > 10, Lb = Lr, Lr based on Fyr = 0.7Fy and Fy = 50 ksi (345 MPa), Cb = 1. 
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Figure 8. Ratio of strength predicted by rt-based LTB equation (with J multiplied by 0.8 for 

sections with D/bft < 2, D/bfc < 2 or bft/tft < 10) to the exact beam theory elastic LTB solution,   
all compact- or noncompact-web sections, Lb = max(85bfc, Lr), Lr based on Fyr = 0.7Fy and                              

Fy = 50 ksi (345 MPa), Cb = 1. 
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maximum value allowed for longitudinally-stiffened I-girders in AASHTO (2004) and D/tw = 
280 is approximately the maximum limit allowed in AISC (1999 and 2005) for slender-web I-
girders with closely-spaced transverse stiffeners and Fy = 50 ksi (345 MPa).  The minimum 

2Dc/tw of 90 is slightly less than the noncompact-web limit 
yF

E7.5  for Fy = 100 ksi (690 MPa).   

The total number of cross-sections considered is 1305.  The comparison of the above two 
equations is independent of Lb; therefore, a specific unbraced length does not need to be defined.   

Figure 10 summarizes the results for this parametric study.  One can observe that for       
Iyc/(Iyc + Iyt) between 0.1 and 0.9, the ratio of the results obtained by Eq. (4) versus Eq. (33) 
ranges from 15 percent conservative to nine percent unconservative.   Since Eqs. (4) and (33) are 
proportional to rt

2 and 2
)0JL(E 2

b
r

=
 respectively, Fig. 10 is also a plot of  rt

2 / 2
)0JL(E 2

b
r

=
.  As explained 

by White and Jung (2003b), the LTB solutions using J = 0 are generally conservative for 
compact- and noncompact-web members relative to distortional buckling solutions, although in 
some cases, this conservatism is minor.   This behavior is expected in general also for slender-
web members; however, the solutions based on J = 0 are expected to give only minor 
conservative error in many cases.  White and Jung (2004) show that the predictions of slender-
web member experimental inelastic and elastic LTB strengths using Eq. (4) as the base elastic 
LTB resistance are quite good, with the results being slightly more conservative overall for 
members with unbraced lengths approaching or exceeding Lr.  
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Figure 10.  Ratio of strength predicted by rt-based LTB equation (Eq. (4)) to the exact beam 
theory elastic LTB solution with J taken equal to zero (Eq. (33)), all slender-web sections               

(Cb = 1). 
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APPLICATION OF EQUATIONS TO COMPOSITE I-SECTIONS IN NEGATIVE 
BENDING AND TO CHANNEL-CAPPED I-SECTIONS 

The application of the rigorous open-walled section beam theory equations to composite I-
sections in negative bending is difficult.  Because of the lateral rigidity of the slab, the shear 
center of the composite section will be near the slab centroid, the term α (Eq. (12)) will be close 
to one, and the coefficient of monosymmetry βx will be approximately equal to –h based on the 
approximate Eq. (18e).  Furthermore, the application of Eq. (19) is questionable because of the 
large Iy and J contributions from the slab.  The key problem here is that the lateral buckling of 
the bottom flange involves distortion of the web whereas the beam theory equations in turn 
assume that the web does not distort, i.e, they are based on the assumption that the I-section 
profile is effectively rigid.   

Oehlers and Bradford (1995 and 1999) provide an extensive discussion and review of 
research relevant to the general distortional bucklng problem as well as research specifically 
relevant to the distorsional buckling problem in composite beams.  They recommend an 
“inverted U-frame” approach for determination of the elastic distortional buckling moment.   
This moment is then used within an ultimate strength curve to determine the design capacity, 
similar to the approach recommended by Schaffer (2003) for handling of distortional buckling in 
cold-formed steel members.  The U-frame model entails the idealization of the compression 
flange as an elastic column on an elastic foundation (the web) subjected to uniform compression.  
The conservatism of this model is acknowledged by Oehlers and Bradford.  Kemp (1996) and 
Dekker et al. (1995) also discuss the composite beam distortional buckling problem, and suggest 
a single effective length factor of 0.71 that they use in the context of specialized strength 
equations directed at capturing the interaction between local and lateral buckling.  

The rt-based LTB equations, Eqs. (2), (3) and (5), combined with the unified flexural 
resistance provisions for I-section members in AASHTO (2004) and AISC (2005), provide a 
conservative but practical and sufficient solution for the LTB strength of many practical 
composite I-section members in negative bending.  In this approach, the rt parameter (Eq. (3)) is 
calculated based on the depth of the web in compression within the composite member, the 
contribution of the slab to the St. Venant torsion constant J is neglected (J is calculated based on 
the steel I-section using Eq. (17)), and the section modulus Sxc is calculated as Myc/Fyc where Myc 
is the yield moment of the cross-section determined considering the noncomposite and composite 
loadings using the procedures in AASHTO (1998 and 2004).  The reader is referred to White 
(2004) for a detailed technical overview of the I-section member unified flexural resistance 
provisions of the above Specifications.   

A number of prior research studies have shown that it is generally conservative to test the 
stability behavior of composite beams in negative bending by using a large steel tension flange, 
or a cover-plated flange.  These elements provide a force equivalent to that developed by the slab 
within the prototype composite member (Barth and White, 1997; White and Barth 1998; Kemp 
1996; Grubb and Carskaddan 1981 and 1979, Climenhaga and Johnson 1972).  The results in this 
paper show that Eqs. (2) and (3) give conservative predictions of the elastic LTB strengths for a 
wide range of all-steel singly-symmetric members.  In the extreme cases where these equations 
give unconservative predictions, the unconservative error is more than compensated for if a 
representative estimate of the lateral and torsional restraint from the slab is included within the 
FEA distortional buckling models.  Therefore, it can be stated that the use of Eqs. (2), (3) and (5) 
is generally conservative for composite I-beams and I-girders both in building and in bridge 
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construction.  This solution is sufficient since, once the Cb parameter is included to account for 
moment gradient effects typical of negative moment regions, the member strengths tend to be at 
or close to Mmax in Fig. 1 for practical brace spacings. 

As an illustration, the Engineer is referred to the shored composite beam analyzed in 
Examples 13.1 and 13.2 of Oehlers and Bradford (1999) and shown in Fig. 11.  The plastic 
moment capacity of this composite beam, using the procedures in AISC (1999 and 2005) and 
AASHTO (1998 and 2004), is 332 kNm (245 ft-k).  The unbraced length Lb specified by Oehlers 
and Bradford is 7 m (23.0 ft), which is greater than Lr from Eq. (5).  Oehlers and Bradford give 
three different estimates of the capacity of this beam: Mn/Mp = 0.728, 0.946, and 1.08.  The later 
two strengths are obtained by first calculating a flexural capacity of the steel section alone, then 
adding a couple associated with the tension in the slab reinforcing steel to the steel section 
flexural capacity.  No reduction is taken in the flexural resistance of the steel section due to this 
axial force however.  This leads to an over-estimation of the composite beam strength 
particularly in the last case, where the steel section is already at its plastic moment prior to 
adding the couple associated with the slab force.  Based on the procedures in AASHTO (2004), 
which use Eq. (2) for the elastic LTB strength, Mn/Mp = 0.356 for Cb = 1 while Mn/Mp = 0.819 
for Cb = 2.3.   Practically speaking, Lb = 7 m is not a realistic unbraced length for this cross-
section.  Since Lb/D is 23.3, Lb = 7 m is more representative of an entire span length.  Suppose 
that the span length of this beam is 7 m (23.0 ft) and the member is braced laterally at its ends 
and at its midspan.  In this case, 2.3 is a likely potential value for Cb, and the procedures in 
AASHTO (2004) give Mn = Mp.  

bf x tf = 170 x 12 mm (6.69 x 0.472 in )

D x tw = 300 x 7 mm (11.8 x 0.276 in)

Ars = 1170 mm2 (1.81 in2)

Fyrs = 400 MPa (58 ksi)

130 mm
(5.12 in)

35 mm (1.38 in)

1500 mm (59.1 in)

Fy = 300 MPa (43.5 ksi)

Lb = 7 m (23.0 ft)

 

Figure 11.  Composite beam in negative bending studied by Oehlers and Bradford (1999).  
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Application of the suggested rigorous beam theory equations to capped channel sections is 
relatively straightforward since Eq. (19) applies generally to the major-axis bending of any type 
of singly-symmetric cross-section.  The key differences relative to the solutions for rectangular-
flange I-shapes discussed within the previous sections are in the determination of Iy, βx, Cw and J.   
The lateral moment of inertia Iy is calculated simply as the sum of the corresponding moments of 
inertia from the I-shape and from the channel cap.  The coefficient of monosymmetry βx is 
obtained directly from Eq. (18a).  Lue and Ellifritt (2003) discuss the calculation of Cw for these 
types of sections.  Their procedure amounts to a subdivision of the cross-section into various 
rectangular areas, with the channel web and the I-shape flange grouped together where they are 
in contact.  The St. Venant torsional constant J is determined conservatively by summing the J 
values from the channel and from the I-shape, i.e., neglecting the influence of the interconnection 
of these shapes on the stresses and strains associated with uniform torsion.   

The rt-based equation also can be applied to determine the elastic LTB strength of a channel-
capped I-section.  In this case, the radius of gyration rt is taken as that of the channel + the flange 
of the I-girder + 1/3 of the area of the web of the I-shape in compression.  As suggested above, J 
is determined by summing the St. Venant torsional constants from each of the shapes.  The 
elastic section modulus Sxc is calculated as Ix/ytop based on elementary strength of materials 
concepts, where ytop is the distance from the centroid of the full cross-section to the extreme fiber 
of the channel cap.  Finally, the parameter h is taken as the distance between the centroid of the 
compression flange plus the channel cap to the mid-thickness of the bottom flange.   The 
resulting elastic LTB strengths are comparable to those obtained using the rigorous beam theory 
equations.  

As an illustration, consider the calculation of Lr for a W36x150 with a C15x33.9 channel cap.  
Lue and Ellifritt (2003) determine Cw = 132100 in6 (35.48x1012 mm6) for this combined section.  
The shear center is located at yo = -6.79 in from the section centroid (Lue and Ellifritt 2003).  
The coefficient of monosymmetry βx evaluates to 18.75 in (476.2 mm) using Eq. (18a).  All of 
the other cross-section parameters are readily available or are easily calculated.  Based on Fyr = 
0.7Fy and Fy = 50 ksi (345 MPa),  Lr evaluates to 439.4 in (11,160 mm) from Eq. (21).   
Correspondingly, if Eq. (5) is used to calculate Lr, the depth of the web in compression is first 
calculated as Dc = 13.76 in (349.5 mm), rt evaluates to 4.333 in (110.1 mm), and h is obtained as 
35.50 in (901.7 mm).  Equation (5) then gives Lr = 418.5 in (10,630 mm), which is 95 percent of 
the Lr obtained from the rigorous beam theory equations.   Furthermore, Fcr based on Eq. (2) 
evaluates to 32.08 ksi (221.2 MPa) or 0.917 Fyr = 0.642 Fy at Lb = Lr = 439.4 in (11,160 mm) 
from the rigorous beam theory equations.   

SUMMARY 

Based on the results presented in this study, the following elastic LTB equations are 
recommended:  

1. For all I-section members with slender webs (composite in negative bending and 
noncomposite), Eq. (4) for Fcr and Eq. (6) for Lr, with rt calculated using Eq. (3) for members 
with a rectangular compression flange.  For these types of members with built-up 
compression flanges or with channel caps, rt may be calculated as the radius of gyration 
about the plane of the web for the flange components plus one-third of the area of the web in 
flexural compression.   
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2. For compact- and noncompact-web composite I-sections in negative bending, Eq. (2) for Fcr 
and Eq. (5) for Lr, with rt calculated using Eq. (3) for members with rectangular compression 
flanges.  For these types of members with built-up compression flanges (e.g., cover-plated 
flanges), rt may be calculated as the radius of gyration about the plane of the web for the 
flange components plus one-third of the area of the web in flexural compression. 

3. For compact- and noncompact-web doubly-symmetric I-section members, Eq. (2) for Fcr and 
Eq. (5) for Lr, with rt calculated using Eq. (3) for members with rectangular compression 
flanges (an alternative exact form for rt in these cases is presented by White and Jung 
(2003a)).  For these types of members with built-up compression flanges, rt may be 
calculated as the radius of gyration about the plane of the web for the flange components plus 
one-third of the area of the web in flexural compression, which is one-sixth of the total area 
of the web.   

4. For compact- and noncompact-web singly-symmetric noncomposite I-section members, 
either of the following alternative equations: 

a. Eq. (2) for Fcr and Eq. (5) for Lr, with rt calculated using Eq. (3) for members with 
rectangular compression flanges.  For these types of members with built-up compression 
flanges or with channel caps, rt may be calculated as the radius of gyration about the 
plane of the web for the flange components plus one-third of the area of the web in 
flexural compression.   

b. Eq. (19) for Mcr and Eq. (21) for Lr, with βx calculated using Eq. (18e) and Cw computed 
using Eq. (14) for members with rectangular flanges.  For general members, βx should be 
calculated using Eq. (18a) and Cw should be calculated from the fundamental principles 
of open-walled section beam theory on which these equations are based.  

The authors prefer Eqs. (2) and (5) as a simple set of equations that give accurate to 
somewhat conservative solutions for the second, third and fourth of the above groups, within the 
context of the restrictions stated below.   These equations have the advantage that the buckling 

moment Mcr depends only on basic and relatively easily understood parameters Cb, Sxc,  
t

b

r
L

, and 

J
hSxc , and the noncompact bracing limit depends only on rt, 

yrF
E , and 

J
hSxc .   Furthermore, Eqs. 

(2) and (5) reduce to the established forms for Mcr and Lr for slender-web members simply by 
setting J = 0 within Eq. (2).  More accurate beam theory results are obtained using Eqs. (19), (21) 
and (18e), but for highly singly-symmetric-members with a smaller flange in compression, the 
applicability of these equations, as well as Eqs. (2) and (5), is limited in general due to web 
distortion (White and Jung 2003b).  Equation (2) tends to give solutions that are more 
conservative than the rigorous beam theory Eq. (19) in these cases.  However, the approximation 
of the rigorous beam theory solution by Eq. (2) is highly accurate for members with D/bft > 2, 
D/bfc > 2 and bft/tft > 10 (see Fig. 7).   

The St. Venant torsional constant should be calculated using Eq. (17) in general in all of the 
approaches, or the more exact version of this equation that includes the bubble in the analogous 
membrane at the web flange juncture forwarded by ElDarwish and Johnston (1965) should be 
employed.  The use of the ideal bftf

3/3 contribution from the flanges overestimates the actual 
value of J by a significant percentage for members with stocky flanges.  
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If Eqs. (2) and (5) are used for members within the fourth of the above groups, the above St. 
Venant torsional constant J should be multiplied by 0.8 whenever Iyc/Iyt is greater than 1.5, unless 
D/bft > 2, D/bfc > 2 and bft/tft > 10.  This factor is required in these cases to limit the 
unconservative error associated with the use of Eq. (2) to a maximum of 9 percent for stocky 
column-type cross-sections that are singly-symmetric.   

The influence of web distortion on the LTB strength, and the corresponding implications 
relative to the use of beam-theory based formulae, are addressed by White and Jung (2003b).  

ACKNOWLEDGEMENTS 
This work was funded by Professional Services Industries, Inc. (PSI) and the Federal 

Highway Administration (FHWA).  The financial support from these organizations is gratefully 
acknowledged.  The opinions, findings and conclusions expressed in this paper are the authors’ 
and do not necessarily reflect the views of the above organizations 

REFERENCES 

AASHTO (2004).  AASHTO LRFD Bridge Design Specifciations, 3rd Edition, American 
Association of State and Highway Transportation Officials, Washington, D.C.  

AASHTO (1998).  AASHTO LRFD Bridge Design Specifications 2nd Edition  with 1999, 2000 
and 2001 Interims, American Association of State and Highway Transportation Officials, 
Washington D.C. 

AISC (2005).  Specification for Structural Steel Buildings, American Institute of Steel 
Construction, Chicago, IL (to appear).  

AISC (1999).  Load and Resistance Factor Design Specification for Structural Steel Buildings, 
American Institute of Steel Construction, Chicago, IL, 292 pp. 

Barth, K. E., and White, D. W. (1997). “Finite Element Evaluation of Pier Moment-Rotation 
Characteristics in Continuous-Span Steel I-Girders.” Engineering Structures, 20(8), 761-
778. 

Clark, J.W. and Hill, H.N. (1960).  “Lateral Buckling of Beams,” Journal of the Structural 
Division, ASCE, 86(ST7), 175-196.  

Climenhaga, J.J. and Johnson, R.P. (1972). “Local buckling in continuous composite beams,” 
The Structural Engineer,” 50(9), 367-374. 

Dekker, N.W., Kemp, A.R. and Trinchero, P. (1995).  “Factors Influencing the Strength of 
Continuous Composite Beams in Negative Bending,” Journal of Constructional Steel 
Research, 34(2-3), 161-186.  

ElDarwish, I.A. and Johnston, B.G. (1965).  “Torsion of Structural Shapes,” Journal of the 
Structural Division, ASCE, 91(ST1), 429-453. 

Grubb, M. A., and Carskaddan, P. S. (1981). Autostress design of highway bridges, phase 3: 
Moment rotation requirements., Research Laboratory Rep., United States Steel Corporation, 
Monroeville, PA. 

Grubb, M. A., and Carskaddan, P. S. (1979). Autostress design of highway bridges, phase 3: 
Initial moment rotation tests., Research Laboratory Rep., United States Steel Corporation, 
Monroeville, PA. 



 27

Kemp, A.R. (1996). “Inelastic Local and Lateral Buckling in Design Codes,” Journal of 
Structural Engineering, 122(4), 374-381. 

Kitipornchai, S. and Trahair, N.E. (1980).  “Buckling Properties of Monosymmetric I-Beams,” 
Journal of the Structural Division, ASCE, 106(ST5), 941-958.  

Lue, D.M. and Ellifritt, D.S. (2003). ”Numerical Evaluation for Warping Constant of Built-Up 
Crane Runway Beam,” Proceedings, Structural Stability Research Council, Annual 
Technical Session and Meeting,  Univ. Missouri, Rolla, MO., 213-232. 

Nethercot, D.A and Trahair, N.S. (1976). “Lateral Buckling Approximations for Elastic Beams,” 
The Structural Engineer, 54(6), 197-204.  

Oehlers, D.J. and Bradford, M.A. (1999). Elementary Behavior of Composite Steel and Concrete 
Structural Members,  Butterworth Heinemann, Oxford, 259 pp.  

Oehlers, D.J. and Bradford, M.A. (1995). Composite Steel and Concrete Structural Members, 
Fundamental Behavior,  Elsevier, NY, 549 pp.  

SAA (1998). Steel Structures, AS4100-1998, Standards Association of Australia, Australian 
Institute of Steel Construction, Sydney, Australia.  

Schaffer, B.W. (2003). “Cold-Formed Steel Design by the Direct Strength Method:  Bye-Bye 
Effective Width,” Proceedings, Structural Stability Research Council, Annual Technical 
Session and Meeting,  Univ. Missouri, Rolla, MO., 357-377.  

SSRC (1998). Guide to Stability Design Criteria for Metal Structures, T.V. Galambos (ed.), 
Structural Stability Research Council, Wiley Interscience, New York, NY, 911 pp. 

Trahair, N.S. (1977).  “Lateral Buckling of Beams and Beam-Columns,” Chapter 3 in Theory of 
Beam-Columns, Vol. 2, W.F.Chen and T. Atsuta (ed.), McGraw-Hill, NY.   

White, D.W. and Barth, K.E. (1998).  “Strength and Ductility of Compact-Flange I Girders in 
Negative Bending,” Journal of Constructional Steel Research, 45(3), 241-280. 

White, D.W. and Chang, C.-J. (2005).  “General Design-Oriented Procedure for Calculation of 
Lateral-Torsional Buckling Effective Length Factors,” Structural Engineering, Mechanics 
and Materials Report No. 30, School of Civil and Environmental Engineering, Georgia 
Insitutute of Technology, Atlanta, GA.  

White, D.W. and Jung, S.-K. (2003a).  “Simplified Lateral Torsional Buckling Equations for I- 
and Channel-Section Members” Structural Engineering, Mechanics and Materials Report No. 
24a, School of Civil and Environmental Engineering, Georgia Insitutute of Technology, 
Atlanta, GA. 

White, D.W. and Jung, S.-K (2003b). “The Effect of Web Distortion on the Lateral-Torsional 
Buckling Strength of I-Beams,” Structural Engineering, Mechanics and Materials Report No. 
24c, School of Civil and Environmental Engineering, Georgia Insitutute of Technology, 
Atlanta, GA. 

White, D.W. and Jung, S.-K. (2004).  “Unified Flexural Resistance Equations for Stability 
Design of Steel I-Section Members – Uniform Bending Tests,” Structural Engineering, 
Mechanics and Materials Report No. 28, School of Civil and Environmental Engineering, 
Georgia Institute of Technology, Atlanta, GA. 

White, D.W. and Kim, Y.D. (2004).  “Unified Flexural Resistance Equations for Stability Design 
of Steel I-Section Members – Moment Gradient Tests,” Structural Engineering, Mechanics 



 28

and Materials Report No. 29, School of Civil and Environmental Engineering, Georgia 
Institute of Technology, Atlanta, GA. 

White, D.W., Barker, M. and Azizinamini, A. (2004).  “Shear Strength and Moment-Shear 
Interaction in Transversely-Stiffened Steel I-Girders,”  Structural Engineering, Mechanics 
and Materials Report No. 27, School of Civil and Environmental Engineering, Georgia 
Institute of Technology, Atlanta, GA. 

 

APPENDIX A –  NOTATION 

A Total cross-sectional area, in2 (mm2) 
Afc Area of compression flange, in2 (mm2) 
Afillet Area of each of the two web-to-compression flange fillets, generally taken equal to zero for welded I-

shapes, in2 (mm2) 
Ars Area of slab reinforcing steel, in2 (mm2) 
Awc Area of web in flexural compression, Dctw, in2 (mm2) 
B1 Variable used in calculating the buckling moment for a singly-symmetric I-section member per Eq. (22), 

defined by Eq. (25) 
B2  Variable used in calculating the buckling moment for a singly-symmetric I-section member per Eq. (22), 

defined by Eq. (27) 
Cb Moment-gradient factor for lateral-torsional buckling  
Cw Warping constant, in6 (mm6) 
D Depth of the web; clear distance between the flange plates, in (mm) 
Dc Depth of the web in compression; distance from the cross-section centroid to the inside face of the 

compression flange, in (mm) 
E Modulus of elasticity of steel, 29 000 ksi (200 000 MPa) 
Fcr Elastic critical stress, ksi (MPa) 
Fcr(exact, beam theory)  Elastic critical stress determined from the rigorous open-wallled section beam theory equations, 

including the exact determination of the coefficient of monosymmetry βx 
Fmax Maximum potential flexural resistance in terms of the compression flange stress, ksi (MPa) 
Fy Specified  minimum yield stress, ksi (MPa) 
Fyr Compression flange flexural stress corresponding to the nominal onset of yielding at the extreme fibers in 

compression or tension, including compression flange residual stress effects  
Fyrs Yield strength of slab reinforcing steel, ksi (MPa) 
G Shear modulus of elasticity of steel, 11 200 ksi (77 220MPa) 
Ix Moment of inertia about the major axis of bending, in4 (mm4) 
Iy Moment of inertia about the minor-axis of bending, in4 (mm4) 
Iyt  Moment of inertia of the tension flange about the plane of the web, in4 (mm4) 
Iyc  Moment of inertia of the compression flange about the plane of the web, in4 (mm4) 
J St. Venant torsion constant, in4 (mm4) 
K Effective length factor for lateral-torsional buckling 
Ky Effective length factor for lateral-torsional buckling associated with minor-axis flexural restraint 
Kz Effective length factor for lateral-torsional buckling associated with warping restraint 
Lb Laterally unbraced length; length between points braced against lateral displacement of the compression 

flange, or between points braced to prevent twist of the cross-section, in (mm) 
Lp Limiting laterally unbraced length to achieve the maximum potential flexural resistance of the section, 

uniform moment case (Cb = 1.0), in (mm) 
Lr Limiting laterally unbraced length to achieve the onset of yielding in uniform bending (Cb = 1.0) at the 

extreme fibers in compression or tension, with consideration of compression flange residual stress effects 
Mcr Elastic buckling moment, kip-in (N-mm) 
Mmax Maximum potential flexural resistance, kip-in (N-mm) 
Mn Nominal flexural strength, kip-in (N-mm) 
Mp  Plastic bending moment about the axis under consideration, kip-in (N-mm) 
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Myc Yield moment corresponding to the onset of yielding at the extreme compression fiber from an elastic 
stress distribution, kip-in (N-mm) 

Myr Yield moment capacity considering compression flange residual stress effects, FyrSxc, kip-in (N-mm)(?) 
Sxc Elastic section modulus corresponding to the extreme compression fiber, in3 (mm3) 
bf Flange width, doubly-symmetric I-shapes and channels; width of the applicable flange, singly-symmetric I-

shapes, in (mm) 
bfc Width of a rectangular compression flange, in (mm) 
d Total depth between the extreme fibers of the flange elements perpendicular to the major axis of bending, 

in (mm) 
h Distance between the centroids of the flange elements perpendicular to the major axis of bending, in (mm) 
hc Distance from the centroid of the cross-section to the mid-thickness of a rectangular compression flange, in 

(mm) 
rE Equivalent column radius of gyration corresponding to elastic lateral-torsional buckling strength, in (mm) 

)0JL(E 2
b

r
=

Equivalent column radius of gyration evaluated in the limit that JLb
2 approaches zero, in (mm) 

)sym,0JL(E 2
b

r
=

 Equivalent column radius of gyration evaluated in the limit that JLb
2 approaches zero, specialized to a 

doubly-symmetric I-section, in (mm) 
rt Radius of gyration for lateral-torsional buckling defined by Eq. (3), in (mm) 
ryc Radius of gyration of the compression flange taken about the y axis, in (mm) 
tf Flange thickness, doubly-symmetric I-shapes and channels; thickness of the applicable flange, singly-

symmetric I-shapes,  in (mm) 
tfc Thickness of a rectangular compression flange, in (mm) 
tw Thickness of the web, in (mm) 
yo distance from the cross-section neutral axis to the shear center, negative if the larger flange is in 

compression, in (mm) 
α Coefficient used in calculating the shear center location yo and the warping constant Cw for a singly-

symmetric I-section, defined by Eq. (12) 
βx Coefficient of monosymmetry, defined by Eqs. (18) 
ν Poisson’s ratio of steel, 0.3 
 


