Revisions and Errata List
 AISC Steel Design Guide 10, $1^{\text {st }}$ printing (Printed Copy)
 October 15, 2012

The following list represents corrections to the first printing (1997) of AISC Design Guide 10, Erection Bracing of Low-Rise Structural Steel Buildings.

Page(s) Item

27 In the left column, the second equation, " $\mathrm{F}=3.73(1.54)(11.5)\left(\mathrm{A}_{\mathrm{f}}\right)=8.61\left(\mathrm{~A}_{\mathrm{f}}\right)$ " should be replaced with " $\mathrm{F}=3.73(1.54)(1.5)\left(\mathrm{A}_{\mathrm{f}}\right)=8.62\left(\mathrm{~A}_{\mathrm{f}}\right)$." (Note: this correction appears in the online PDF version of this publication.)

Equation 5-1 should read:

$$
\Delta_{1}=\frac{(0.2 \mathrm{NBS}-\mathrm{P}) \mathrm{L}}{\mathrm{~A}(0.9) \mathrm{E}}
$$

Near the middle of the right column, the sentence beginning "Per Caltrans..." should read:
Per Caltrans (9) the maximum cable drape (A) should be 2.75 in .
In the $9^{\text {th }}$ line from the bottom of the right column, the corresponding calculation of P should read:

$$
\begin{aligned}
\mathrm{P} & =(0.84)(40)^{2} /\left[8\left(\frac{2.75}{12}\right)(0.847)\right] \\
& =866 \mathrm{lbs} .
\end{aligned}
$$

The horizontal and vertical components of the preload force are 734 pounds and 460 pounds, respectively.

In the left column, $2^{\text {nd }}$ line, the calculation for Δ_{1} should read:

$$
\begin{align*}
\Delta_{1} & =\frac{[0.2(45,400)-866](47.2)}{0.216(0.9)(13,000,000)} \tag{Eq.5-1}\\
& =0.15 \mathrm{ft}
\end{align*}
$$

The calculation in the $3^{\text {rd }}$ line from the bottom of the left column should read:

$$
(\sin \theta) a=\left(\sin 0.9^{\circ}\right)(25)=0.393 \mathrm{ft}
$$

At the top of the right column, replace the first 8 lines with the following:

$$
\begin{aligned}
\mathrm{R} & =\frac{81,120(0.393)}{25} \\
& =1,275 \mathrm{lbs} .
\end{aligned}
$$

$1,275(47.51 / 40)=1,514 \mathrm{lbs}$.
Cable force including P Δ effects:
$11,013+1,514+866=13,393 \mathrm{lbs}$.
Cable force: $13,393 \mathrm{lbs}$.
Allowable cable force $=45,400 / 3=15,133>13,393 \mathrm{lbs}$.
Therefore, use $\mathrm{a}^{3 / 4}$ in. diameter cable.

