Revisions and Errata List
 AISC Steel Design Guide 11, $2^{\text {nd }}$ Edition, $1^{\text {st }}$ printing (Printed and Digital Editions) February 16, 2023

The following list represents corrections made to the first printing (dated May 2016) and digital edition of the second edition of AISC Design Guide 11, Vibrations of Steel-Framed Structural Systems Due to Human Activity.

Page(s) Item

Table 4-5. Vertical Acceleration Tolerance Limits and Parameters				
Step Frequency, $\mathbf{H z}$	Acceleration Tolerance Limit, $\mathbf{a o}_{\mathbf{o}}, \mathbf{0} \boldsymbol{g}$	Calibration Factor, \boldsymbol{R}	Walking Load Parameter, γ	Remarks
≤ 2.5	1.7	0.7	0.29	Normal descents
$2.5-4.0$	3.0	0.6	0.19	Rapidly descending individual - not perceptible
$2.5-4.0$	4.5	0.6	0.19	Rapidly descending individual -perceptible; rapidly descending group

In the right column, first paragraph, replace the last two sentences with:
Similarly, for rapid descents, $R=0.6$.
In the $10^{\text {th }}$ line, the value of D_{j} should be revised from $183 \mathrm{in} .4 / \mathrm{ft}$ to $184 \mathrm{in} .4 / \mathrm{ft}$, as previously calculated in Example 4.1. The subsequent calculation for B_{g} should also be revised to change the value of D_{j} from $183 \mathrm{in} .{ }^{4} / \mathrm{ft}$ to $184 \mathrm{in} .{ }^{4} / \mathrm{ft}$, changing the value of B_{g} from 63.8 ft to 63.9 ft . In the
subsequent calculation for W_{g}, the value of B_{g} should be revised from 63.8 ft to 63.9 ft , which changes the value of W_{g} from $116,000 \mathrm{lb}$ to $117,000 \mathrm{lb}$.

Halfway down the page, in the calculation for the equivalent panel mode panel weight, W, the value of W_{g} should be revised from $116,000 \mathrm{lb}$ to $117,000 \mathrm{lb}$. The final calculated value of W does not change.

In Figure $4-8$, revise the $35^{\prime}-0^{\prime \prime}$ joist span to $30^{\prime}-00^{\prime \prime}$.
In the Solution section to Example 4.3 under Beam Mode Properties, revise the value of D_{j} from $183 \mathrm{in} .{ }^{4} / \mathrm{ft}$ to $184 \mathrm{in} .{ }^{4} / \mathrm{ft}$. Under Girder Mode Properties, revise B_{g} from 63.8 ft to 63.9 ft and W_{g} from $116,000 \mathrm{lb}$ to $117,000 \mathrm{lb}$. Under Combined Mode Properties, in the calculation for W, revise W_{g} to $117,000 \mathrm{lb}$, and the final value of W to $85,200 \mathrm{lb}$.

At the top of the page, in the calculation for a_{p} / g, revise W to $85,200 \mathrm{lb}$, and the final value of a_{p} / g to 0.00625 equivalent fo $0.625 \% g$.

In the Example 4.4 Solution, under Beam Mode Properties, revise the value of D_{j} from $183 \mathrm{in} .4 / \mathrm{ft}$ to $184 \mathrm{in} .{ }^{4} / \mathrm{ft}$.

Revise page 55 to the following:

Evaluation Criterion for Individual Descending Rapidly

The predicted acceleration ratio from Equation $4-8$ with $R=0.6$ and $\gamma=0.19$ from Table 4-5 is:

$$
\begin{align*}
\frac{a_{p}}{g} & =0.62 e^{-\gamma f_{n}} \frac{R Q \cos ^{2} \theta}{\beta W_{s}} \phi_{W} \phi_{R}\left(1-e^{-100 \beta}\right) \leq \frac{a_{o}}{g} \tag{4-8}\\
& =0.62 e^{-0.19(7.02 \mathrm{~Hz})} \frac{0.6(168 \mathrm{lb})\left(\cos ^{2} 28.3^{\circ}\right)}{0.03(15,500 \mathrm{lb})}(0.995)(0.960)\left[1-e^{-100(0.03)}\right] \\
& =0.0249 \text { or } 2.49 \% g
\end{align*}
$$

The predicted peak acceleration does not exceed the Table 4-5 tolerance limit, $3 \% \mathrm{~g}$, thus individuals rapidly descending the stair are not expected to cause objectionable vibrations from people standing on the stair.

Evaluation Criterion for Rapidly Descending Group

The predicted peak acceleration due to a rapidly descending group is triple the acceleration due to a rapidly descending individual:

$$
\begin{aligned}
a_{p} & =3(2.49 \% g) \\
& =7.47 \% g
\end{aligned}
$$

In the left column, in the paragraph between Equation 5-1 and 5-2, in the second line, insert "ratio" after "peak acceleration."

In Example 6.1, the sentence above the final calculation for $V_{1 / 3}$ should be revised to:
As discussed in Section 6.1.2, because the sensitive equipment can be anywhere in the bay, $\phi_{E}=1.0$, and the predicted maximum velocity is

In the right column, first full paragraph, revise last sentence to:
For rapid descents, $R=0.6$.

Revise Table 7-4 as follows:

Table 7-4. Fourier Series Parameters for Rhythmic Group Loads		
Group Dancing, $\boldsymbol{w}_{\boldsymbol{p}}=\mathbf{1 2 . 5} \mathbf{~ p s f}$		
Dominant Frequency, Hz	h	α
$1.5-2.7$	1	0.50
$3.0-5.4$	2	0.05
Lively Concert or Sports Event, $\boldsymbol{w}_{\boldsymbol{p}}=\mathbf{3 1} \mathbf{~ p s f}$		
Dominant Frequency, Hz	h	α
$1.5-2.7$	1	0.25
$3.0-5.4$	2	0.05
Aerobics, $\boldsymbol{w}_{\boldsymbol{p}}=\mathbf{4 . 2}$	$\mathbf{~ p s f}$	
Dominant Frequency, Hz	h	α
$2.0-2.75$	1	1.5
$4.0-5.50$	2	0.6
$6.0-8.25$	3	0.1
Jumping Exercises, $\boldsymbol{w}_{p}=\mathbf{4 . 2} \mathbf{~ p s f}$		
Dominant Frequency, Hz	h	α
$2.0-2.75$	1	1.8
$4.0-5.5$	2	1.3
$6.0-8.25$	3	0.7
$8.0-11$	4	0.2

Revise the text following Predicted Acceleration Due to Lively Concert as follows:

Predicted Acceleration Due to Lively Concert

The estimated weight of participants, w_{p}, is 18.7 psf. From Table 7-4, the dynamic load factors for lively concerts are $\alpha_{1}=0.25$ and $\alpha_{2}=0.05$, and the excitation frequency, $f_{\text {step }}$, is between 1.5 Hz and 2.7 Hz . The maximum frequency of the second harmonic is 5.4 Hz , which is less than the fundamental frequency, 7.21 Hz , so it is not possible for a force harmonic to match a natural frequency and cause resonance. The FRF magnitude indicates the maximum response will occur when the step frequency is at its maximum value, 2.7 Hz ; hence, $f_{\text {step }}=2.7 \mathrm{~Hz}$. The Load Case 1 FRF magnitudes at 2.7 Hz and 5.4 Hz are higher than the corresponding Load Case 2 FRF magnitudes, thus Load Case 1 is used to evaluate the balcony.

The peak acceleration due to the first harmonic, using Equation 7-9, is

$$
\begin{aligned}
a_{p, 1} & =F R F\left(f_{\text {step }}\right) \alpha_{1} w_{p} \\
& =(0.177 \% \mathrm{~g} / \mathrm{psf})(0.25)(18.7 \mathrm{psf}) \\
& =0.827 \% g
\end{aligned}
$$

(from Eq. 7-9)

Replace the calculations with the following:
The peak acceleration due to the second harmonic is:

$$
\begin{align*}
a_{p, 2} & =F R F\left(2 f_{\text {step }}\right) \alpha_{2} w_{p} \tag{fromEq.7-9}\\
& =(1.24 \% \mathrm{~g} / \mathrm{psf})(0.05)(18.7 \mathrm{psf}) \\
& =1.16 \% \mathrm{~g}
\end{align*}
$$

The total peak acceleration, computed using the 1.5 power rule, Equation $7-10$, is:

$$
\begin{align*}
a_{p} & =\left[\sum_{i}\left(a_{p, i}\right)^{1.5}\right]^{1 / 1.5} \\
& =\left[(0.827)^{1.5}+(1.16)^{1.5}\right]^{1 / 1.5} \tag{7-10}\\
& =1.59 \% g
\end{align*}
$$

104
Replace Figure 7-17 with the following:

(a) Load Case 1

(b) Load Case 2

Fig. 7-17. Predicted FRF magnitudes, Example 7.2.
125
In the entry for Δ_{j}, revise the definition to:
midspan deflection of the beam or joist due to the weight supported by the member, in.

