Revisions and Errata List

AISC Steel Design Guide 24, 1st Printing (Printed Edition) and March 2015 Revision (Digital Edition)

February 16, 2023

The following list represents corrections to the first printing and the March 2015 revision (digital edition) of AISC Design Guide 24, *Hollow Structural Section Connections*.

Page(s) Item

- The reference to the equation $R_n = F_w A_w$ should be "Spec. Eq. J2-3" instead of "Spec. Eq. I2-3."
- In the first calculation box at the top of the page, the value of b is incorrect in the calculation for $T_r/(d_b + 2b)$. The calculation should be revised to:

LRFD	ASD
T_u _ 7.60 kips	T_a _ 5.05 kips
$\frac{d_b + 2b}{d_b + 2b} - \frac{11.0 \text{ in.} - 8.00 \text{ in.}}{3/4 \text{ in.} + 2\left(\frac{11.0 \text{ in.} - 8.00 \text{ in.}}{2}\right)}$	$\frac{d_b + 2b}{d_b + 2b} = \frac{11.0 \text{ in.} - 8.00 \text{ in.}}{3/4 \text{ in.} + 2\left(\frac{11.0 \text{ in.} - 8.00 \text{ in.}}{2}\right)}$
= 2.03 kips/in.	= 1.35 kips/in.
Use T_u/g in the weld size determination	Use T_a/g in the weld size determination

In the left column, update the ϕ and Ω values in the calculation box to:

LRFD	ASD
$c = \phi = 0.75$ $R_c = \phi r_n$	$c = \frac{1}{\Omega}$ where $\Omega = 2.00$ $R_c = \frac{r_n}{\Omega}$

Equation 5-16 should be revised as follows to correct the denominator:

$$w \ge \frac{P_r \sqrt{2}}{2BF_{wc}}$$

Equation 5-21 should be revised so that alpha cannot be taken as negative. Replace Equation 5-21 with the following:

$$\alpha = \frac{K(P_r / n)}{t_p^2} - 1 \ge 0$$

Figure 5-9 should be revised so that the connection plate dimensions are as shown in the figure below:

In the middle of the page, the corrected calculations should read:

For the end bolts

$$L_c = 2.00 - 1\frac{1}{16} \text{ in./2}$$

= 1.47 in.

and therefore, the left side of the inequality in Equation J3-6a is:

$$1.2L_c t F_u = 1.2 (1.47 \text{ in.}) (0.750 \text{ in.}) (58 \text{ ksi})$$

= 76.7 kips

The right side of the inequality in Equation J3-6a is:

$$2.4dtF_u = 2.4(1.00 \text{ in.})(0.750 \text{ in.})(58 \text{ ksi})$$

= 104 kips
76.7 kips < 104 kips

Therefore, use $R_n = 76.7$ kips

Replace the first calculation box with the following:

LRFD	ASD
For the end bolts	For the end bolts
$\phi = 0.75$	$\Omega = 2.00$
$\phi R_n = 0.75 \big(76.7 \text{ kips} \big)$	$R_n = 76.7 \text{ kips}$
= 57.5 kips	Ω 2.00
1	= 38.4 kips
For the interior bolts	For the interior bolts
$\phi_{\nu}r_n = 101$ kips per inch of thickness	$\frac{r_n}{r_n}$ = 67.4 kips per inch of thickness
$\phi R_n = 101 \text{ kips/in.} (0.750 \text{ in.})$	$\frac{1}{\Omega_{v}}$ = 07.4 kips per filen of unexhess
= 75.8 kips	$\frac{\phi_n}{\Omega} = 67.4 \text{ kips/in.} (0.750 \text{ in.})$
	= 50.6 kips
For the 4 bolts	For the 4 bolts

$$\phi R_n = 2(57.5 \text{ kips}) + 2(75.8 \text{ kips})$$
= 267 kips
$$= 267 \text{ kips}$$

$$= 178 \text{ kips}$$

Replace the calculations beginning at the top of the page with the following:

where

93

$$A_{gv} = 2L_{gv}t_s$$
 $L_{gv} = 3.00 \text{ in.} + 2.00 \text{ in.}$
 $= 5.00 \text{ in.}$
 $A_{gv} = 2(5.00 \text{ in.})(0.750 \text{ in.})$
 $= 7.50 \text{ in.}^2$
 $A_{nv} = A_{gv} - 2(1.5)(d_h + \frac{1}{16} \text{ in.})t_s$
 $= 7.50 \text{ in.}^2 - 2(1.5)(\frac{1}{16} \text{ in.} + \frac{1}{16} \text{ in.})(0.750 \text{ in.})$
 $= 4.97 \text{ in.}^2$
 $A_{nt} = t_s \left[3.00 - (d_h + \frac{1}{16}) \right]$
 $= 0.750 \text{ in.} \left[3.00 - (\frac{1}{16} \text{ in.} + \frac{1}{16} \text{ in.}) \right]$
 $= 1.41 \text{ in.}^2$
 $U_{bs} = 1.0 \text{ since tension is uniform}$

The left side of the inequality given in AISC Specification Equation J4-5 is:

$$0.6F_u A_{nv} + U_{bs} F_u A_{nt} = 0.6 (58 \text{ ksi}) (4.97 \text{ in.}^2) + 1.0 (58 \text{ ksi}) (1.41 \text{ in.}^2)$$
$$= 255 \text{ kips}$$

The right side of the inequality given in Equation J4-5 is

$$0.6F_y A_{gv} + U_{bs} F_u A_{nt} = 0.6 (36 \text{ ksi}) (7.50 \text{ in.}^2) + 1.0 (58 \text{ ksi}) (1.41 \text{ in.}^2)$$
$$= 244 \text{ kips}$$

Because 255 kips > 244 kips, use $\phi R_n = 244$ kips.

The available strength of the tee stem for the limit state of block shear rupture is:

LRFD	ASD
$\phi = 0.75$	$\Omega = 2.00$
$\phi R_n = 0.75 (244 \text{ kips})$ $= 183 \text{ kips}$	$\frac{R_n}{\Omega} = \frac{244 \text{ kips}}{2.00}$ $= 122 \text{ kips}$

- In the left column, first complete paragraph, the second to last sentence beginning with "In the case shown in Figure 8-3(b)..." should be revised to read, "In the case shown in Figure 8-3(c)...."
- In Figure 8-3(b), the upward vertical load on the chord, $0.2P_r$, should be replaced with $0.2P_r\sin\theta$.

- In Figure 8-9, the axial loads on the branch members i and j should be given as $P_L = 69.0$ kips and $P_D = 23.0$ kips.
- 113 Replace the 5th line from the bottom with:

$$25\% \le O_v = 5.5\% \le 100\%$$
 o.k.

The calculation boxes should be replaced with the following:

LRFD	ASD
For compression branch and tension branch,	For compression branch and tension branch,
$P_u = 1.2(23.0 \text{ kips}) + 1.6(69.0 \text{ kips})$	$P_a = 23.0 \text{ kips} + 69.0 \text{ kips}$
=138 kips	= 92.0 kips

The calculation boxes at the top of the page should be replaced with the following:

LRFD	ASD
For tension (overlapping) branch,	For tension (overlapping) branch,
$\phi P_n = 0.95 (159 \text{ kips})$	$P_n = 159 \text{ kips}$
=151 kips	Ω 1.58
151 kips > 138 kips o.k.	= 101 kips
	101 kips > 92.0 kips o.k.
For compression (overlapped) branch,	For compression (overlapped) branch,
$\phi P_n = 0.95 (248 \text{ kips})$	$P_n = 248 \text{ kips}$
= 236 kips	Ω 1.58
236 kips > 138 kips o.k.	= 157 kips
250 kips > 150 kips	157 kips > 92.0 kips o.k.

In Figure 9-4, the HSS16×12×½ should be an HSS 16×12×5. The three rectangular HSS members should be labeled as ASTM A500 Gr. B.