## Revisions and Errata List <br> AISC Steel Design Guide 24, $1^{\text {st }}$ Printing (Printed Edition) and March 2015 Revision (Digital Edition) <br> February 16, 2023

The following list represents corrections to the first printing and the March 2015 revision (digital edition) of AISC Design Guide 24, Hollow Structural Section Connections.

Page(s) Item

10

37

52

53

The reference to the equation $R_{n}=F_{w} A_{w}$ should be "Spec. Eq. J2-3" instead of "Spec. Eq. I2-3."

In the first calculation box at the top of the page, the value of $b$ is incorrect in the calculation for $T_{r} /\left(d_{b}+2 b\right)$. The calculation should be revised to:

| LRFD | ASD |
| :---: | :---: |
| $\frac{7.60 \mathrm{kips}}{T_{b}+2 b}=\frac{5.05 \mathrm{kips}}{3 / 4 \mathrm{in} .+2\left(\frac{11.0 \mathrm{in} .-8.00 \mathrm{in} .}{2}\right)}$ | $\frac{T_{a}}{d_{b}+2 b}=\frac{3 / 4 \mathrm{in} .+2\left(\frac{11.0 \mathrm{in} .-8.00 \mathrm{in} .}{2}\right)}{2.03 \mathrm{kips} / \mathrm{in} .}$ |
| $=2.35 \mathrm{kips} / \mathrm{in}$. |  |
| Use $T_{u} / g$ in the weld size determination | Use $T_{a} / g$ in the weld size determination |

In the left column, update the $\phi$ and $\Omega$ values in the calculation box to:

| LRFD | ASD |
| :---: | :---: |
| $c=\phi=0.75$ | $c=\frac{1}{\Omega}$ where $\Omega=2.00$ |
| $R_{c}=\phi r_{n}$ | $R_{c}=\frac{r_{n}}{\Omega}$ |

Equation 5-16 should be revised as follows to correct the denominator:

$$
w \geq \frac{P_{r} \sqrt{2}}{2 B F_{w c}}
$$

Equation 5-21 should be revised so that alpha cannot be taken as negative. Replace Equation 5-21 with the following:

$$
\alpha=\frac{K\left(P_{r} / n\right)}{t_{p}{ }^{2}}-1 \geq 0
$$

Figure 5-9 should be revised so that the connection plate dimensions are as shown in the figure below:


In the middle of the page, the corrected calculations should read:
For the end bolts

$$
\begin{aligned}
L_{c} & =2.00-1^{1} 16 \mathrm{in} . / 2 \\
& =1.47 \mathrm{in} .
\end{aligned}
$$

and therefore, the left side of the inequality in Equation J3-6a is:

$$
\begin{aligned}
1.2 L_{c} t F_{u} & =1.2(1.47 \mathrm{in} .)(0.750 \mathrm{in} .)(58 \mathrm{ksi}) \\
& =76.7 \mathrm{kips}
\end{aligned}
$$

The right side of the inequality in Equation J3-6a is:

$$
\begin{aligned}
2.4 d t F_{u} & =2.4(1.00 \mathrm{in} .)(0.750 \mathrm{in} .)(58 \mathrm{ksi}) \\
& =104 \mathrm{kips} \\
76.7 \mathrm{kips} & <104 \mathrm{kips}
\end{aligned}
$$

Therefore, use $R_{n}=76.7 \mathrm{kips}$

| LRFD | ASD |
| :---: | :---: |
| For the end bolts | For the end bolts |
| $\phi \quad=0.75$ | $\Omega=2.00$ |
| $\phi R_{n}=0.75$ (76.7 kips) | $\frac{R_{n}}{\Omega}=\underline{76.7 \mathrm{kips}}$ |
| $=57.5 \mathrm{kips}$ | $\begin{aligned} \Omega & 2.00 \\ & =38.4 \mathrm{kips} \end{aligned}$ |
| For the interior bolts | For the interior bolts |
| $\phi_{v} r_{n}=101$ kips per inch of thickness $\phi R_{n}=101 \mathrm{kips} / \mathrm{in} .(0.750 \mathrm{in} .)$ | $\frac{r_{n}}{\Omega_{v}}=67.4$ kips per inch of thickness |
| $=75.8 \mathrm{kips}$ | $\frac{\phi_{n}}{\Omega}=67.4 \mathrm{kips} / \mathrm{in} .(0.750 \mathrm{in} .)$ |
| For the 4 bolts | $=50.6 \mathrm{kips}$ <br> For the 4 bolts |

$$
\begin{array}{rl|l}
\phi R_{n} & =2(57.5 \mathrm{kips})+2(75.8 \mathrm{kips}) & \begin{aligned}
\frac{R_{n}}{\Omega} & =2(38.4 \mathrm{kips})+2(50.6 \mathrm{kips}) \\
& =267 \mathrm{kips} \\
& =178 \mathrm{kips}
\end{aligned}
\end{array}
$$

Replace the calculations beginning at the top of the page with the following:
where

$$
\begin{aligned}
A_{g v} & =2 L_{g v} t_{s} \\
L_{g v} & =3.00 \mathrm{in.}+2.00 \mathrm{in} . \\
& =5.00 \mathrm{in} . \\
\mathrm{A}_{g v} & =2(5.00 \mathrm{in} .)(0.750 \mathrm{in} .) \\
& =7.50 \mathrm{in.}^{2} \\
A_{n v} & =A_{g v}-2(1.5)\left(d_{h}+1 / 16 \mathrm{in} .\right) t_{s} \\
& =7.50 \mathrm{in.}^{2}-2(1.5)(11 / 16 \mathrm{in} .+1 / 16 \mathrm{in} .)(0.750 \mathrm{in} .) \\
& =4.97 \mathrm{in.}^{2} \\
A_{n t} & =t_{s}\left[3.00-\left(d_{h}+1 / 16\right)\right] \\
& =0.750 \text { in. }[3.00-(11 / 16 \text { in. }+1 / 16 \mathrm{in} .)] \\
& =1.41 \text { in. }{ }^{2} \\
U_{b s} & =1.0 \text { since tension is uniform }
\end{aligned}
$$

The left side of the inequality given in AISC Specification Equation J4-5 is:

$$
\begin{aligned}
0.6 F_{u} A_{n v}+U_{b s} F_{u} A_{n t} & =0.6(58 \mathrm{ksi})\left(4.97 \mathrm{in.}^{2}\right)+1.0(58 \mathrm{ksi})\left(1.41 \mathrm{in} .^{2}\right) \\
& =255 \mathrm{kips}
\end{aligned}
$$

The right side of the inequality given in Equation J4-5 is

$$
\begin{aligned}
0.6 F_{y} A_{g v}+U_{b s} F_{u} A_{n t} & =0.6(36 \mathrm{ksi})\left(7.50 \mathrm{in.}^{2}\right)+1.0(58 \mathrm{ksi})\left(1.41 \mathrm{in.}^{2}\right) \\
& =244 \mathrm{kips}
\end{aligned}
$$

Because 255 kips $>244$ kips, use $\phi R_{n}=244$ kips.
The available strength of the tee stem for the limit state of block shear rupture is:

| LRFD | ASD |
| :--- | :--- |
| $\phi \quad=0.75$ | $\Omega$ |
| $=2.00$ |  |
| $\phi R_{n}$ | $=0.75(244 \mathrm{kips})$ |
|  | $=183 \mathrm{kips}$ |
|  | $=122 \mathrm{kips}$ |

In the left column, first complete paragraph, the second to last sentence beginning with "In the case shown in Figure 8-3(b)..." should be revised to read, "In the case shown in Figure 8-3(c)...."

In Figure 8-3(b), the upward vertical load on the chord, $0.2 P_{r}$, should be replaced with $0.2 P_{r} \sin \theta$.

The calculation boxes at the top of the page should be replaced with the following:

| LRFD | ASD |
| :---: | :---: |
| For tension (overlapping) branch, $\begin{aligned} \phi P_{n} & =0.95(159 \mathrm{kips}) \\ & =151 \mathrm{kips} \end{aligned}$ | For tension (overlapping) branch, $\frac{P_{n}}{\Omega}=\frac{159 \mathrm{kips}}{1.58}$ |
| 151 kips > 138 kips o.k. | $\begin{gather*} =101 \text { kips } \\ 101 \text { kips }>92.0 \text { kips } \end{gather*}$ |
| For compression (overlapped) branch, $\begin{aligned} \phi P_{n} & =0.95(248 \mathrm{kips}) \\ & =236 \mathrm{kips} \end{aligned}$ <br> 236 kips $>138$ kips o.k. | For compression (overlapped) branch, $\begin{aligned} \frac{P_{n}}{\Omega} & =\frac{248 \mathrm{kips}}{1.58} \\ & =157 \mathrm{kips} \end{aligned}$ $157 \text { kips }>92.0 \text { kips }$ <br> o.k. |

In Figure 8-9, the axial loads on the branch members i and j should be given as $P_{L}=69.0$ kips and $P_{D}=23.0$ kips.

Replace the $5^{\text {th }}$ line from the bottom with:

$$
25 \% \leq O_{v}=5.5 \% \leq 100 \%
$$

o.k.

The calculation boxes should be replaced with the following:

| LRFD | ASD |
| :--- | :--- |
| For compression branch and tension <br> branch, | For compression branch and tension <br> branch, |
| $P_{u}=1.2(23.0 \mathrm{kips})+1.6(69.0 \mathrm{kips})$ <br> $=138 \mathrm{kips}$ | $P_{a}=23.0 \mathrm{kips}+69.0 \mathrm{kips}$  <br>  $=92.0 \mathrm{kips}$ |

In Figure $9-4$, the $\operatorname{HSS} 16 \times 12 \times 1 / 2$ should be an HSS $16 \times 12 \times 5 / 8$. The three rectangular HSS members should be labeled as ASTM A500 Gr. B.

