Revision and Errata List—July 2020
 AISC Seismic Design Manual, $3^{\text {rd }}$ Edition

The following list represents corrections to the First Printing of the AISC Seismic Design Manual, 3rd Edition. These corrections are incorporated in the Second Printing dated January 2020.

Page(s) Item

viii Insert the following after the $1^{\text {st }}$ sentence in the Scope section:
Other structures are defined as structures designed, fabricated, and erected in a manner similar to buildings, with building-like vertical and lateral load resisting elements.

4-43 Revise the sentence near the bottom of the page to say, "The seismic design story drift between the second..."

4-113 Near the middle of the page, revise calculation result to, " $=480 \mathrm{kips}<691 \mathrm{kips}$." At the last line of calculations, revise to, "= 479 kips <691 kips n.g."

4-133 Revise the panel zone strength calculations as follows:

$$
\begin{aligned}
\alpha P_{r} & =1.0(249 \mathrm{kips}) \\
& =249 \mathrm{kips} \\
0.75 P_{y} & =0.75 F_{y} A_{g} \\
& =0.75(50 \mathrm{ksi})\left(51.8 \mathrm{in}^{2}\right) \\
& =1,940 \mathrm{kips}
\end{aligned}
$$

For $\alpha P_{r} \leq 0.75 P_{y}$, the design strength of the panel zone is given by AISC Specification Equation J10-11.

4-142 In the first paragraph, revise $\left(P_{r c}<0.3 P_{r}\right)$ to $\left(P_{r c}<0.3 P_{c}\right)$.

Revise the required plate washer load and flexural strength as follows:

LRFD	ASD
For the plate washer load, w_{u} :	For the plate washer load, w_{a} :
$w_{u}=\frac{N_{u a}}{4 A_{b r g}}$	$w_{a}=\frac{N_{a a}}{4 A_{b r g}}$
$=378 \mathrm{kips}$	268 kips
$\overline{4\left(17.0 \mathrm{in.}^{2}\right)}$	$\overline{4\left(17.0 \mathrm{in}^{2}\right)}$
$=5.56 \mathrm{ksi}$	$=3.94 \mathrm{ksi}$
For a 1-in. strip of plate:	For a 1-in. strip of plate:
$M_{u}=\frac{w_{u} l^{2}}{2}$	$M_{a}=\frac{w_{a} l^{2}}{2}$
$=\underline{(5.56 \mathrm{ksi})(1 \mathrm{in} .)(0.500 \mathrm{in} .)^{2}}$	$=\underline{(3.94 \mathrm{ksi})(1 \mathrm{in} .)(0.500 \mathrm{in} .)^{2}}$
$\begin{aligned} & 2 \\ & =0.695 \mathrm{kip}-\mathrm{in} .<11.3 \mathrm{kip}-\mathrm{in} . \quad \text { o.k. } \end{aligned}$	$=\frac{2}{2}$ $=0.493 \mathrm{kip}-\mathrm{in} .<7.49 \mathrm{kip}-\mathrm{in} . \quad$ o.k.

5-222
9.1-291
9.2-38 In the equation for N, revise b_{f} to $t_{b f}$:

$$
N=t_{b f}+2 w+2 t_{p}, \text { in. }(\mathrm{mm})
$$

