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Abstract 
This paper presents highlights of on-going research, which aims at developing analytical, 
computational and experimental predictions of the phenomenon of creep buckling in steel 
columns subjected to fire. Analytical solutions using the concept of time-dependent tangent 
modulus are developed to model time-dependent buckling behavior of steel columns at elevated 
temperatures. Results from computational creep buckling studies using Abaqus are also 
presented, and compared with analytical predictions. Material creep data on ASTM A992 steel is 
also presented in the paper and compared to existing creep models for structural steel. Both 
analytical and computational methods utilize material creep models for structural steel developed 
by Harmathy, and by Fields and Fields. Predictions from this study are also compared against 
those from Eurocode 3 and the AISC Specification. It is clear from results presented in this paper 
that having an accurate knowledge of material creep is essential in predicting column buckling 
behavior at elevated temperatures. There is clearly a need for more extensive and reliable creep 
data for structural steel. Most importantly, results show that neglecting creep effects can lead to 
significant errors in predicting the strength of steel columns subjected to fire. 
 
 
1. Introduction 
Successful implementation of performance-based structural-fire safety philosophy in designing 
steel structures depends on accurate predictions of thermal and structural response to fire. An 
important aspect of such predictions is the ability to evaluate strength of columns at elevated 
temperatures. Columns are critical structural elements, and failure of columns can lead to 
collapse of structures. One of the critical factors affecting the strength of steel columns at 
elevated temperatures is the influence of material creep. Under fire conditions, steel columns can 
exhibit creep buckling, a phenomenon in which the critical buckling load for a column depends 
not only on slenderness and temperature, but also on duration of applied load. Although material 
creep and consequently the phenomenon of creep buckling can significantly impact the safety of 
steel columns subjected to fire, they have received relatively little research attention, and are not 
currently explicitly considered in code-based design formula for columns at elevated 
temperatures, such as those in the Eurocode 3 or in the AISC Specification. This paper presents 
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highlights of on-going research on the phenomenon of high-temperature creep buckling of steel 
columns. 
 
2. Creep of Steel at Elevated Temperatures 
2.1 Background on Creep 
It is generally accepted that for ductile materials like steel, plastic strain is a function of shear 
stress and time at any specific temperature. Therefore, for design purposes, it is usually assumed 
that the total plastic strain at a constant temperature can be broken into a time-independent 
component or slip and a time-dependent component or creep. For typical loading rates seen in 
buildings, the inelastic response of steel at room temperature shows a very mild dependence on 
loading rate and virtually no dependence on time. Therefore, time effects are normally neglected 
in the analysis and design of steel structures at ambient temperature. However, as temperature 
increases, steel exhibits increasingly significant creep effects. 
 
Creep tests, either in tension or compression, are usually conducted by subjecting a material to 
constant load, hence constant engineering stress at a specific temperature, and then measuring 
engineering strain as a function of time. A typical creep curve is often divided into the three 
stages of primary, secondary and tertiary creep. In the primary stage, the curve is nonlinear and 
typically exhibits a decreasing creep strain rate with increase in time. In the secondary stage, the 
creep strain rate is almost constant, and this stage is often referred to as steady-state creep. In the 
tertiary stage, the creep strain rate increases with time in an unstable manner. For steel, the shape 
of the curve, the magnitude of the creep strain and the time scale are greatly affected by both the 
temperature and the stress level. 
 
Experimental and empirical models have been developed to predict creep strain of steel at 
elevated temperatures (Norton 1929; Bailey 1929; Zener and Hollomon 1944; Dorn 1955; 
Harmathy 1967; Fields and Fields 1989). One of the simplest and most widely used creep models 
is the Norton-Bailey model, also known as the creep power law (Norton 1929; Bailey 1929). It 
should be noted that although the Norton-Bailey law is capable of modeling primary creep, it can 
define the steady-state or secondary stage of creep more accurately. One of the widely used creep 
models in structural-fire engineering applications proposed by Fields and Fields (1989) 
incorporates a power law and represents creep strain, εc, in the form of a Norton-Bailey equation 
as follows: 
 
  σat ε cb=c

 (1) 

 
In this equation, t is time and σ is stress. The parameters a, b and c are temperature-dependent 
material properties. Fields and Fields (1989) derived equations for these temperature-dependent 
material properties for ASTM A36 steel. The model developed by Fields and Fields (1989) is 
capable of predicting creep in the temperature range of 350 °C to 600 °C and for creep strains up 
to 6-percent. For initial studies of creep buckling of steel columns at elevated temperatures, one 
of the creep models used by the authors was the Fields and Fields (1989) model. The application 
of this creep model together with observations will be discussed in more detail in the following 
sections of this paper. 
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Another creep model used by the authors in their study of creep buckling phenomenon at high 
temperatures is the one developed by Harmathy (1967). Harmathy (1967) appears to be one of 
the first investigators who attempted at developing creep formula for structural steels at elevated 
temperatures. Harmathy proposed a creep model based on experiments on several structural and 
prestressing steels including ASTM A36. His model attempts to predict creep strains in both the 
primary and secondary stages of creep using the concept of activation energy for creep, Qc. The 
model proposed by Harmathy (1967) represents creep strain, εc, for steel as follows: 
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In this equation, θ is the temperature-compensated time in Dorn’s creep theory (Dorn 1955), Z is 
the slope of the secondary part of the creep curve (εc versus θ), also known as the Zener-
Hollomon parameter (Zener and Hollomon 1944), and εcₒ is the intercept obtained by extending 
the straight-line section (secondary part) of the εc(θ) curve to the εc axis. The parameters εcₒ, and 
Z are stress-dependent material parameters. 
 
Although models developed by Fields and Fields (1989) and Harmathy (1967) are referenced by 
many investigators in the field of structural-fire engineering, their predictions of creep strain for 
some applied stress levels and temperatures are quite different. As an example, predictions from 
these two models for ASTM A36 steel are compared and plotted in Fig. 1 for an applied stress of 
23 ksi at 500 °C. As can be observed from this plot, the differences in the two models are 
significant. This difference in creep predictions and its impact on creep buckling behavior will be 
discussed in the following sections and emphasized throughout this paper. 
 

 
Figure 1: Comparison between Fields and Fields’ (1989) and Harmathy’s (1967) Models at 23 ksi and 500 °C 

 
2.2 Creep of ASTM A992 Steel at Elevated Temperatures 
In this section, representative results of a comprehensive material creep investigation of ASTM 
A992 steel at elevated temperatures are presented and discussed. In addition, these experimental 
creep results are compared against the creep material models by Fields and Fields (1989) and by 
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Harmathy (1967) to verify the accuracy and reliability of their predictions. As mentioned in the 
previous section, creep tests are usually conducted by subjecting the material to constant stress 
and temperature, and then measuring strain as a function of time. Such tests are commonly 
referred to as steady state tests, in which the specimens are heated up to a specified temperature 
and then loaded to the desired stress while maintaining the same temperature. It should be also 
mentioned that during the initial heating process, the load is maintained at zero to allow free 
expansion of the specimen. As far as the steel material is concerned, almost all specimens were 
cut from the web and flanges of a W4×13 section made from ASTM A992 structural steel. Some 
specimens were also cut from the web of a W30×99 section which is also of ASTM A992 steel. 
 
Representative results of creep tests on ASTM A992 steel are shown in Fig. 2 for materials from 
the webs of the W4×13 (Fy = 60 ksi) and the W30×99 (Fy = 62 ksi) sections. This figure simply 
shows the measured creep strain versus time response of ASTM A992 steel after being exposed 
to specified constant stresses at 500 °C and 700 °C. As can be observed from Fig. 2, it is clear 
that creep effects are highly significant in the stress-strain response of structural steel at 
temperatures on the order of 500 °C to 700 °C; temperatures that can be expected in steel 
members during a fire. It should be specifically noted that some of the curves in Figs. 2(a) and 
2(b) show very large creep strains in the time frame of one to two-hours, which may be 
considered a representative time frame for a compartment fire. Interestingly, curves at 700 °C 
indicate that the material from the web almost immediately enters the tertiary stage of creep, with 
a rapid increase in creep strain over a short time interval. In the case of the W4×13 web material, 
the coupon actually fractured approximately after 44 minutes, a phenomenon known as stress 
rupture or creep fracture. 
 

 
                      (a) Constant Stress of 40 ksi at 500 °C                              (b) Constant Stress of 10 ksi at 700 °C 

Figure 2: Verification of Material Creep Models against the Web Materials of W4×13 and W30×99 
 
Figs. 2(a) and 2(b) also compare experimental results from the web material of the W4×13 
sections and the web material of the W30×99 section. As is clear, there is appreciable difference 
in material creep response between the two specimens that are both ASTM A992 steel. This 
observation suggests that there may be large variability in creep response for a particular grade 
of steel, and this variability should be considered in any attempt at developing general material 
creep models for structural steel at elevated temperatures. Note that some of this variability may 
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be due to experimental error resulting from factors such as non-uniform temperature distribution 
over the gage-length of the steel coupons, inaccuracies involved in temperature and strain 
measurements, inaccuracies in maintaining constant stress, etc. 
 
Predictions from material creep models are also compared with experimental results in Figs. 2(a) 
and 2(b). As can be seen in these figures, there is not generally a very good agreement between 
material creep model predictions and experimental creep results. It should be noted that in order 
to compare the experimental material creep predictions to those from Fields and Fields (1989) 
and Harmathy (1967) models, corrections must be made due to the difference in materials. As 
mentioned before, these two material creep models are developed for ASTM A36 steel, not for 
ASTM A992 steel. A suggested methodology to make this correction is to adjust for the stress 
values considering the difference in yield strength of materials in consideration (Luecke et al. 
2005). Since ASTM A36 steel has lower yield strength than that of ASTM A992 steel, the stress 
values should be reduced in creep equations (a reduction factor equal to the ratio of 36 ksi to 60 
ksi has been considered). Therefore, some of the discrepancies observed in Fig. 2 are due to such 
stress adjustments. Moreover, in order to draw any conclusion on inconsistencies observed in 
Fig. 2, limitations in the scope of creep models and approximations involved have to be carefully 
considered. It should also be added that the creep models by Fields and Fields (1989) and by 
Harmathy (1967) are suitable for predicting creep strains in the primary and secondary stages of 
creep. As a result, they cannot capture tertiary creep behaviors observed at 700 °C as can be seen 
in Fig. 2(b). All in all, observations like these clearly indicate the need for more reliable creep 
models for structural steel at elevated temperatures. 
 
3. Creep Buckling of Steel Columns at Elevated Temperatures 
3.1 Background on Creep Buckling 
The term creep buckling, as used herein, refers to the phenomenon in which the critical buckling 
load for a column depends not only on slenderness and temperature of the column, but also on 
the duration of applied load. Since creep effects are not significant at room temperature, the 
buckling load for a steel column of given effective slenderness KL/r at room temperature is 
independent of the duration of applied load. As temperature increases, the initial buckling load 
(at time zero) decreases, due to the decrease in material strength, modulus and proportional limit. 
Consequently, the buckling capacity at initial application of load depends only on temperature. 
But, as temperature increases and material creep becomes significant, the buckling load depends 
not only on temperature, but also on the duration of load application. 
 
3.2 Creep Buckling Analysis of Steel Columns – Analytical Treatment 
To better evaluate the potential importance of creep buckling in structural-fire engineering 
applications, preliminary creep buckling analyses have been conducted by the authors. These 
analyses, analytical and computational, attempt to predict the elevated-temperature creep 
buckling strength of a pin ended steel column. For these analyses, a W12×120 section made of 
ASTM A36 steel is considered. Moreover, the effective slenderness ratio is kept constant by 
considering only one single column length of 240 inches. 
 
For the analytical creep buckling studies, the concept of time-dependent tangent modulus 
proposed by Shanley (1952) is utilized, along with the creep material models developed by 
Harmathy (1967) and by Fields and Fields (1989), both for ASTM A36 steel. This analytical 
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method basically uses the Euler buckling equation and replaces Young’s Modulus, E, with the 
tangent modulus, ET, which is a function of time, stress and temperature. In order to calculate the 
time-dependent tangent modulus, the isochronous stress-strain curves need to be constructed. 
Simply put, isochronous stress-strain curves are constant-time stress-strain curves derived from 
creep curves. The slope of the tangent to the isochronous stress-strain curve at any stress and 
time value is the time-dependent tangent modulus. Since the material creep equation by Fields 
and Fields (1989) has a simple form, it can be used to explain the procedure of constructing 
isochronous stress-strain curves and evaluating time-dependent tangent moduli correspondingly. 
At a specific time, Eq. 1 can be rewritten as follows, 
 
  σa ε c

=c
 (3) 

 
where aₒ is equal to atb and is constant. In fact, since aₒ is dependent on a, b and t, it is both 
temperature and time dependent. It can also be inferred from Eq. 3 that each constant-time, 
stress-creep strain curve is conceptually equivalent to a time-independent stress-plastic strain 
curve, here with the power law representation (Morovat et al. 2010). As a result, the total strain 
which is the sum of elastic, plastic (time-independent inelastic) and creep (time-dependent 
inelastic) strains can be written as, 
 
  σafσ σ/E ε cg

o
  (4) 

 
Eq. 4 therefore represents the isochronous stress-strain curves based on the creep model by 
Fields and Fields (1989). Representative isochronous stress-strain curves based on Eq. 4 at 400 
°C are shown in Fig. 3. 
 

 
Figure 3: Representative Isochronous Stress-Strain Curves at 400 °C 

 
Eq. 4 can be further used to derive an expression for time-dependent tangent modulus. In other 
words, using the differential form of Eq. 4. and considering the tangent to be the slope of the 
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stress-strain curve, dσ/dε, a mathematical expression relating tangent modulus to stress can be 
derived as follows, 
 

     
]Ecσa[fgσ1

E
E 

1)(c

0

1)(gT  
  (5) 

 
in which, E is the temperature-dependent Young’s modulus and ET is the tangent modulus, here a 
function of both time and temperature. Representative isochronous tangent modulus-stress 
curves based on Eq. 5 at 400 °C are shown in Fig. 4. 
 

 
Figure 4: Representative Isochronous Tangent Modulus-Stress Curves at 400 °C 

 
Isochronous tangent modulus-stress curves constructed using Eq. 5 can be used to determine 
creep buckling loads graphically. From the classical tangent modulus theory for inelastic column 
behavior, the relationship between stress and tangent modulus at a specific temperature can be 
written as, 
 

 σ
π

(KL/r)
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  (6) 

 
From Eq. 6, it can be deduced that constant slenderness ratios represent straight lines through the 
origin on the tangent modulus-stress plots. Intersections of such lines with each tangent modulus-
stress isochrone have horizontal components on the stress axis. These stress components are 
therefore time-dependent buckling stresses for the column in consideration. In addition, the time 
isochrone corresponding to each specific creep stress and consequently the creep buckling load is 
referred to as the failure time or time-to-buckle. 
 
The process of graphical evaluation of creep buckling stresses is further illustrated in Fig. 5, 
where two straight lines associated with two different slenderness ratios for a W12×120 column 
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are shown along with isochronous tangent modulus-stress curves determined using Eq. 5 at 500 
°C. As an example, for the failure time of 240 minutes in Fig. 5, the creep buckling stress of 
about 11.8 ksi (creep buckling load of 414 kips) is predicted for the column length of 240 inches. 
 

 
Figure 5: Graphical Representation of the Concept of Creep Buckling at 500 °C 

 
In addition to the graphical solution described above, Eq. 5 can be used to obtain creep buckling 
curves numerically. Since ET / E = Pcr / PE, Eq. 5 yields an equation for creep buckling, which is 
shown as Eq. 7. 
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PE is the Euler buckling load at elevated temperatures in Eq. 7. At buckling, σ = σcr = Pcr /A, 
therefore Eq. 7 can be rewritten as follows, 
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 (8) 

 
in which A is the cross sectional area of the column. Eq. 8 can be solved iteratively to get the Pcr 
as a function of time at a constant temperature. Sample solutions of Eq. 8 applied to a 240-inch 
long, W12×120 column are plotted in Fig. 6. 
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                   (a) Using Fields and Fields’ Creep Model                               (b) Using Harmathy’s Creep Model 

Figure 6: Analytical Creep Buckling Curves using Time-Dependent Tangent Modulus Method 
 
As a final note on the analytical formulation, it should be added that this method disregards any 
initial imperfections and assumes a perfectly straight column. 
 
3.3 Creep Buckling Analysis of Steel Columns – Computational Treatment 
As a next step, computational predictions of creep buckling are developed using Abaqus. In 
order to simulate creep buckling in Abaqus, first, temperature is increased to the desired level, 
and then a fraction of the zero-time buckling load is applied to the column. No material creep is 
considered in these two steps. Next, the column is allowed to creep over the time period of 50 
hours under the sustained load. Finally, the time-to-buckle due to creep is estimated. It should be 
pointed out here that to get the zero-time buckling load, an inelastic load-deflection analysis has 
to be performed. This has been done in Abaqus by using a nonlinear analysis scheme called Riks 
Analysis. Moreover, to model initial geometric imperfections, an Eigen-value buckling analysis 
is performed. The initial shape of the column is taken as the shape of the first buckling mode, 
and the magnitude of the imperfection is chosen as a fraction of the column length. As far as 
material modeling is concerned, the inelastic material models (both time-independent and creep) 
at elevated temperatures are defined using the models developed by Fields and Fields (1989) 
based on material tests by Skinner (1972), explained in the previous section. 3D hexahedral 
eight-node linear brick elements, C3D8R, have been utilized to model the columns in Abaqus. 
 
As an example, the results of creep buckling simulations for the temperature of 500 °C and an 
initial out-of-straightness of L/1000 are presented in Fig. 7 as plots of creep deflection versus 
time at different load levels. Fig. 7 clearly shows that the rate of change of deflection with time 
increases very slowly at the beginning and then increases more rapidly until the column no 
longer can support its load. The time at which the displacement-time curves become nearly 
vertical is taken as the failure time or time-to-buckle in this study. 
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Figure 7: Lateral Deflections due to Creep at 500 °C and Δo = L/1000 

 
Curves like the ones presented in Fig. 7 can be used to construct time-dependent column 
buckling curves, examples of which are shown in Fig. 8 for three different temperatures. 
 

 
Figure 8: Computational Creep Buckling Curves with Δo = L/1000 = 0.240 in. 

 
3.4 Creep Buckling Analysis of Steel Columns – Analytical versus Computational Predictions 
Creep buckling predictions from analytical and computational methods are compared at 600 °C 
and presented in Fig. 9. The analytical predictions are for a perfect column, while the 
computational one is for a column with L/1000 initial crookedness. As can be seen in Fig. 9, 
there is a distinct difference between the zero-time buckling capacity predicted by the 
computational approach and those predicted by the time-dependent tangent modulus theory even 
in the cases using the same material creep model proposed by Fields and Fields (1989). The 
zero-time buckling predictions by the tangent modulus are in fact on the unconservative side.  
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Unconservative predictions of buckling strength by the tangent modulus theory compared with 
experiments have been also observed and reported in the literature for columns made of 
aluminum and titanium alloys with slenderness ratios in the range of about 60 to 80 (Wang 1948; 
Carlson and Manning 1958). The authors are continuing work to better explain the discrepancy 
between theoretical buckling predictions using tangent modulus theory versus computational 
predictions using Abaqus. The explanation, in part, may relate to a very high degree of 
sensitivity of buckling capacity to initial geometric imperfection for materials with highly 
nonlinear stress-strain curves, as is the case with structural steel at elevated temperatures. Further 
discussion is provided below.  
 
In addition to discrepancies in the zero-time buckling load predictions, the differences in 
theoretical creep buckling predictions observed in Fig. 9 can be related to the difference in 
predictions of the material creep models by Harmathy (1967) and Fields and Fields (1989), 
especially in primary creep considerations at high levels of stress as shown in Fig. 1. 
 

 
Figure 9: Comparison between Analytical and Computational Creep Buckling Predictions at 600 °C 

 
Creep buckling curves presented in Fig. 9 further suggest a close relationship between the zero-
time or time-independent buckling load predictions and the overall creep buckling behavior of 
steel columns at elevated temperatures due to fire.  
 
As noted above, there appears to be a strong correlation between initial geometric imperfection 
and the zero-time buckling load predictions at high temperatures. This is further verified in Table 
1, where zero-time buckling load predictions using Abaqus and considering different initial 
imperfections are compared against those predicted by the tangent modulus theory at different 
temperatures. As can be observed in Table 1, as the magnitude of initial imperfection approaches 
zero, a better agreement can be reached between time-independent buckling capacities calculated 
by the theory and simulations. But even for very small deviations from straightness, significant 
reductions in column buckling capacities can be seen, especially for practical imperfection 
values in the order of L/1000, equal to 0.240 in. for the column in consideration. As seen from 
the data in Table 1 the reduction in buckling strength is very large. 
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Table 1: Zero-Time Buckling Load Predictions at Elevated Temperatures 

Temperature 
(°C) 

Pcr (kip) 

Tangent Modulus 
Initial Imperfection Amplitude, Δo (in.) 

0.010 0.080 0.096 0.120 0.160 0.240 0.480 
400  643 615 546 541 534 520 505 472 
500  619 603 512 507 500 490 471 433 
600 424 419 341 338 333 326 315 291 

 
By comparing the zero-time buckling load predictions at different temperatures, it can also be 
inferred that the highly nonlinear stress-strain behavior of structural steel at elevated 
temperatures like 400 and 500 °C, has an amplifying effect on the role of initial geometric 
imperfection in lowering the load-carrying capacity of steel columns at elevated temperatures. 
The interactions between nonlinear material behavior and initial crookedness and the resulting 
impact on steel column strength at high temperatures is an area that definitely deserves more 
research attention. 
 
The importance of initial geometric imperfections in predicting creep buckling behavior of steel 
columns at elevated temperatures will be more elaborated in the following section of this paper. 
 
3.5 Effect of Initial Geometric Imperfections on Creep Buckling Predictions 
Although classical buckling theories are developed on the assumption of perfect columns, 
imperfections in the form of initial curvatures and load eccentricities always exist in real 
columns. In fact, initial geometric imperfections have been one of the main sources of 
discrepancies between theoretical and experimental predictions of column buckling strengths at 
ambient temperature. Their strong influence on reducing column buckling capacity is well 
understood and accounted for in modern design codes (Southwell 1932; Timoshenko 1936; 
Shanley 1947; Ziemian 2010; AISC 2010). As for the role of initial crookedness in elevated-
temperature instabilities, while there are published data in the literature suggesting their 
importance in predicting the buckling strength of steel columns, their influence in the creep 
buckling analysis is not well established. Therefore, the goal in this section is to provide some 
insight on how initial geometric imperfections affect creep buckling behaviors through 
computational column buckling studies using Abaqus. 
 
Figure 10 shows the results of a series of Abaqus simulations of creep buckling tests on 240-inch 
long, W12×120 steel columns with different initial out-of-straightness at 500 °C. As it is clear 
from Fig. 10, initial geometric imperfections have major impact on the zero-time or time-
independent buckling load predictions, which in turn result in different creep buckling behaviors. 
More specifically, Fig. 10 indicates that higher initial crookedness values result in lower zero-
time buckling capacities of the steel column in consideration at 500 °C. Fig. 10, however, does 
not clearly show how the initial imperfections affect the creep buckling capacities. 
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Figure 10: Computational Creep Buckling Predictions Corresponding to Different Initial Imperfections at 500 °C 

 
An instructive way to study the effect of initial out-of-straightness on creep buckling strength of 
steel columns at elevated temperatures is to construct curves of creep buckling time vs. initial 
imperfection magnitude for a given column load. Two samples of such curves are presented in 
Fig. 11 corresponding to sustained loads of 420 and 410 kips. As can be seen from Fig. 11, the 
creep buckling time drops significantly as the applied load approaches the zero-time buckling 
load for a specific initial crookedness. In other words, initial imperfections can have a profound 
impact on creep buckling time of steel columns with low to moderate imperfections, typical of 
imperfections expected in structural steel columns. For example, in the case of a steel column 
with an initial imperfection of 0.240 inches, increasing the applied load from 410 to 420 kips 
reduces the creep buckling time of the column from 121 to 73 minutes. 
 

 
Figure 11: Representative Creep Buckling Time vs. Maximum Initial Imperfection Curves at 500 °C 
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3.6 Effect of Residual Stresses on Creep Buckling Predictions 
Residual stresses have been shown to significantly influence the buckling of columns of 
intermediate slenderness at ambient temperature. Numerous measurements of the magnitude and 
distribution of residual stresses in rolled and welded steel shapes are available, and their 
influence on column strength is well understood (Ziemian 2010). However, little is known 
regarding the influence of magnitude and distribution of residual stresses on column strength at 
high temperatures. 
 
In this section, an attempt has been made to investigate the importance of residual stresses on 
creep buckling predictions for steel columns at elevated temperatures. The residual stress pattern 
suggested by Galambos and Ketter (1959) and Ketter (1960), as shown in Fig. 12, has been used 
as the room-temperature, initial stress state in computational creep buckling analyses using 
Abaqus. 
 

 
Figure 12: Lehigh Residual Stress Distribution (Galambos and Ketter 1959; Ketter 1961) 

 
The influence of residual stresses on creep buckling predictions at high temperatures is shown in 
Fig. 13. Curves shown in Fig. 13 are generated as a result of creep buckling simulations on 240-
inch long, W12×120 steel columns with the initial imperfection amplitude of L/1000. As can be 
observed from Fig. 13, the presence of residual stresses has moderate effects on reducing the 
zero-time buckling capacities at elevated temperatures even though the apparent effect of 
differences in zero-time buckling strength predictions upon creep buckling behavior is not clear. 
It can also be seen from Fig. 13 that the effect of residual stresses on the creep buckling behavior 
of steel columns becomes less significant at higher temperatures like 600 °C. This may be 
explained by the fact that at very high temperatures like 600 °C, the material stress-strain 
response becomes intrinsically highly nonlinear with a significantly reduced proportional limit   
and the residual stresses have also been relaxed due to the effects of high temperatures. 
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Figure 13: The Effect of Residual Stresses on Creep Buckling Predictions  

 
The effect of residual stresses on creep buckling strength of steel columns at elevated 
temperatures can also be represented utilizing curves of creep buckling time vs. initial 
imperfection magnitude at constant column loads. Fig. 14, for instance, plots such curves for a 
constant load of 420 kips in the presence and absence of residual stresses. It is apparent from 
curves in Fig. 14 that residual stresses have the most impact on creep buckling capacities of steel 
columns with low to moderate initial imperfections. 

 
Figure 14: Representative Creep Buckling Time vs. Maximum Initial Imperfection Curves at 500 °C 

 
4. Comparison with AISC and Eurocode 3 Predictions 
In this section results obtained from analytical and computational creep buckling analyses 
presented in the previous sections will be compared with the corresponding elevated temperature 
column strength predictions of AISC (2010) and Eurocode 3 (2006). 
 
It should be pointed out here that formula to predict column strength at high temperatures in 
Appendix 4 of the 2010 edition of the AISC Specification for Structural Steel Buildings are based 
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on work by Takagi and Deierlein (2007). Both the Eurocode 3 (2006) column strength formula 
and that proposed by Takagi and Deierlein (2007) predict column strength as a function of 
temperature, but do not consider duration of load and temperature exposure; i.e., they do not 
consider creep buckling effects. These formulas are based on computational studies using 
elevated-temperature stress-strain curves for steel that do not explicitly include creep effects, and 
are verified against high-temperature column buckling experiments that also did not explicitly 
consider time dependent effects on buckling. 
 
Fig. 15 depicts the comparison of creep buckling predictions from Abaqus and time-dependent 
tangent modulus with the ones from Eurocode 3 (2006) and AISC (2010), for a 240-inch long 
W12×120 column of ASTM A36 steel. Generally speaking, it can be observed that code-based 
predictions underestimate buckling strength of this column for relatively short load durations, at 
higher temperatures such as 600 and 700 °C. The problem with code-based predictions of 
buckling becomes more evident when analytical creep buckling predictions using Harmathy’s 
material creep model are compared against code-based ones, as shown in Figs. 15(b), 15(c) and 
15(d). It is also interesting to note that as temperatures get higher, analytical and computational 
buckling predictions using the Fields and Fields material creep model get closer, suggesting that 
the effect of creep is perhaps more important in overall inelastic buckling behavior at higher 
temperatures. Observations like these clearly show the significance of the need for more reliable 
creep data for structural steel. 
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Figure 15: Comparison between Computational and Analytical Creep Buckling Predictions with Code-Based 

Buckling Predictions 
 
5. Conclusion 
This paper has presented some results of on-going research on the time-dependent buckling 
behavior of steel columns subjected to fire. Studies were conducted using a 3D finite element 
model incorporating both geometric and material nonlinearities. Analytical solutions were also 
developed to consider material creep effects on the overall time-dependent buckling. Predictions 
from this study were also compared against those from Eurocode 3 and the AISC Specification. 
 
It is clear from results presented in this paper that material creep is significant within the time, 
temperature, and stress regimes expected in a building fire and that having an accurate 
knowledge of material creep is essential in predicting column buckling behavior at elevated 
temperatures. There is clearly a need for more extensive and reliable creep data for structural 
steel. In addition, results show that neglecting creep effects can lead to erroneous and potentially 
unsafe predictions of the strength of steel columns subjected to fire. 
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