Localized Web Buckling of Double-Coped Beams

Bo Dowswell ${ }^{1}$, Robert Whyte ${ }^{2}$

Abstract

In beam-to-girder connections, the beam is usually coped to allow a standard connection to the girder web. If the beam and girder are of equal depth, both flanges must be coped. Due to the flexural and shear stresses in the coped portion of the web, web buckling can limit the local strength. The AISC Steel Construction Manual provides a design procedure for web buckling of double-coped beams. However, the equations are not valid if the cope depth exceeds 20% of the beam depth. Although the design equations were developed for beams with equal cope sizes at the top and bottom, it is common for the cope sizes to be unequal. This research addresses three issues related to the local stability of double-coped beams: 1 . Cope depths greater than 20% of the beam depth, 2 . Unequal cope depths at the top and bottom, 3. Unequal cope lengths at the top and bottom. 54 elastic finite element models were used to determine the effect of each variable on the critical load. A semi-empirical design model, with lateral-torsional buckling as the basis, was used to formulate equations to predict localized web buckling of double-coped beams. A buckling modification factor was determined by curve fitting the finite element data.

1. Introduction

In beam-to-girder connections, the beam is usually coped to allow a standard connection to the girder web. If the beam and girder are of equal depth, both flanges must be coped as shown in Fig. 1. The cope length can be large at skewed beam connections, connections to wide flange truss chords, and other less common framing conditions. Additionally, it is common for double-coped beams to have unequal cope depths at the top and the bottom, and some connections require unequal cope lengths at the top and bottom flange.

Due to the flexural and shear stresses in the coped portion of the web, web buckling can limit the local strength. The AISC Steel Construction Manual (AISC, 2011), provides a semi-empirical design procedure for localized stability of double-coped beams. The procedure was developed by Cheng et al. (1984) based on a lateral-torsional buckling model with an adjustment factor determined by curve fitting data from elastic finite element models. Because the adjustment factor was derived empirically, limits of applicability were placed on the design equations. The design procedure is not valid if the cope length exceeds

[^0]twice the beam depth or the cope depth exceeds 20% of the beam depth. All of the models had equal cope sizes at both the top and the bottom.

Figure 1. Double-Coped Beam
In many practical cases, the cope geometry falls outside the limits of applicability of the AISC Manual procedure. This paper addresses three issues related to the localized web stability of double-coped beams: 1. Cope depths greater than 20% of the beam depth, 2 . Unequal cope depths at the top and bottom, 3. Unequal cope lengths at the top and bottom. 54 elastic finite element models were used to determine the effect of each variable on the critical load.

2. Existing Publications

2.1 Cheng et al. (1984)

Cheng et al. (1984) developed the design procedure in the AISC Steel Construction Manual (AISC, 2011) with the results of 14 elastic finite element models. BASP finite element software was used as described by Akay et al. (1977). The models were braced laterally at the face of the compression flange cope. The buckled shapes showed that the tension edge of the coped cross section experienced lateral movement and the shear center of the coped region experienced lateral movement and twisting. The semi-empirical design procedure was developed based on a lateral-torsional buckling model with an adjustment factor determined by curve fitting data from the finite element models. All of the models had equal cope sizes at both the top and the bottom.

2.2 Steel Construction Manual (AISC, 2011)

The model for the design procedure developed by Cheng et al. (1984) is shown in Fig. 1. The required flexural strength at the face of the cope is

$$
\begin{equation*}
M_{r}=R_{r} e \tag{1}
\end{equation*}
$$

The nominal flexural strength is

$$
\begin{equation*}
M_{n}=F_{c r} S_{n e t} \tag{2}
\end{equation*}
$$

The critical stress is

$$
\begin{equation*}
F_{c r}=0.62 \pi E f_{d} \frac{t_{w}^{2}}{c h_{0}} \leq F_{y} \tag{3}
\end{equation*}
$$

The adjustment factor is

$$
\begin{equation*}
f_{d}=3.5-7.5\left(\frac{d_{c t}}{d}\right) \tag{4}
\end{equation*}
$$

where
$E=$ modulus of elasticity, ksi
$F_{y}=$ specified minimum yield stress, ksi
$R_{r}=$ required end reaction, kips
$S_{n e t}=$ section modulus of the coped section, in. ${ }^{3}$
c = cope length, in.
d = beam depth, in.
$d_{c t}=$ depth of the top cope, in.
$e=$ distance from the face of the cope to the end reaction, in.
$h_{o}=$ reduced depth of web, in.
$t_{w}=$ web thickness, in.
The preceding equations are based on a lateral-torsional buckling model and are valid when $c \leq 2 d$ and $d_{c} \leq 0.2 d$. If $d_{c}>0.2 d$, the following equations, which are based on a plate buckling model (Muir and Thornton, 2004), are applicable.

$$
\begin{equation*}
F_{c r}=F_{y} Q \tag{5}
\end{equation*}
$$

The reduction factor for plate buckling is
When $\lambda \leq 0.7$

$$
\begin{equation*}
Q=1.0 \tag{6a}
\end{equation*}
$$

When $0.7<\lambda \leq 1.41$

$$
\begin{equation*}
Q=1.34-0.486 \lambda \tag{6b}
\end{equation*}
$$

When $\lambda>1.41$

$$
\begin{equation*}
Q=\frac{1.30}{\lambda^{2}} \tag{6c}
\end{equation*}
$$

The slenderness parameter is

$$
\begin{equation*}
\lambda=\frac{h_{0}}{10 t_{w}} \sqrt{\frac{F_{y}}{475+280\left(\frac{h_{0}}{c}\right)^{2}}} \tag{7}
\end{equation*}
$$

2.3 AISC Specification Section F11

Because the Manual equations developed by Cheng et al. (1984) were based on a lateraltorsional buckling model, AISC Specification (AISC, 2010) Section F11 will be reviewed here. Section F11 provides design information for the flexural strength and stability of rectangular members bent about their major axis.

For yielding, $\frac{L_{b} d}{t^{2}} \leq \frac{0.08 E}{F_{y}}$

$$
\begin{equation*}
M_{n}=M_{p}=F_{y} Z \leq 1.6 M_{y} \tag{8}
\end{equation*}
$$

For inelastic lateral-torsional buckling, $\frac{0.08 E}{F_{y}}<\frac{L_{b} d}{t^{2}} \leq \frac{1.9 E}{F_{y}}$

$$
\begin{equation*}
M_{n}=C_{b}\left[1.52-0.274\left(\frac{L_{b} d}{t^{2}}\right) \frac{F_{y}}{E}\right] M_{y} \leq M_{p} \tag{9}
\end{equation*}
$$

For elastic lateral-torsional buckling, $\frac{L_{b} d}{t^{2}}>\frac{1.9 E}{F_{y}}$

$$
\begin{equation*}
M_{n}=F_{c r} S_{x} \leq M_{p} \tag{10}
\end{equation*}
$$

The critical stress is

$$
\begin{equation*}
F_{c r}=\frac{1.9 E C_{b}}{\frac{L_{b} d}{t^{2}}} \tag{11}
\end{equation*}
$$

where
$C_{b}=$ lateral-torsional buckling modification factor
$L_{b}=$ distance between brace points, in.
$M_{n}=$ nominal moment, kip-in.
$M_{y}=$ yield moment, kip-in.
$M_{p}=$ plastic moment, kip-in.
$S_{x}=$ elastic section modulus, in. ${ }^{3}$
$Z=$ plastic modulus, in. ${ }^{3}$
t = beam width, in.
Eq. 11 is the theoretical solution for lateral-torsional buckling (Timoshenko and Gere, 1961) multiplied by C_{b} and simplified by substituting the properties for a rectangular cross section. It can be shown that Eq. 3 is equal to Eq. 11 by substituting $t=t_{w}, d=h_{0}, L_{b}=c$ and $C_{b}=f_{d}$ into Eq. 11. Therefore, f_{d} is simply a lateral-torsional buckling modification factor applied to the theoretical equation for the critical moment of a rectangular beam.

3. Finite Element Models

AISC Specification Section F2 equations for lateral-torsional buckling of wide flange beams are based on the theoretical solution (Timoshenko and Gere, 1961), with C_{b} factors developed primarily using elastic finite element models. The inelastic portion of the buckling curve was developed by mapping, based on limited testing and finite element results in the inelastic zone. Because much of the inelastic research was based on a constant moment along the beam length $\left(C_{b}=1\right)$, the full beam length was inelastic. Therefore, the buckling curves are conservative for $C_{b}>1$, because they don't account for partial inelasticity along the beam. This same procedure was used in this research to develop equations for the local stability of coped beams.

The finite element program was designed to address three issues related to the local stability of double-coped beams: 1. Cope depths greater than 20% of the beam depth, 2 . Unequal cope depths at the top and bottom, 3. Unequal cope lengths at the top and bottom. 54 elastic finite element models were used to determine the effect of each variable on the critical load. Using the variables shown in Fig. 2, the program consisted of 30 models with $c_{t}=c_{b}, 12$ models with $c_{t}>c_{b}$, and 12 models with $c_{t}<c_{b}$. The details are listed in Appendix A Tables A1, A2 and A3, respectively.

Figure 2. Different Cope Sizes at the Top and Bottom Flanges
All models were built with the nominal dimensions of a W16x26. Following the modeling techniques of Cheng et al. (1984), BASP finite element software was used to determine the critical loads, and the flanges were braced laterally at the face of the cope.

4. Results

All of the finite element models buckled in a similar manner as shown in Fig. 3. Confirming the results of Cheng et al. (1984), the tension edge of the coped cross section experienced lateral translation and the shear center experienced lateral translation and twisting. The compression edge of the coped section buckled in the shape of a half sine wave, which extended partially into the uncoped portion of the beam due to lateral translation at the reentrant corner of the cope.

Figure 3. Buckled Shapes
To form a semi-empirical design model, the buckling mode must be identified. The buckled shapes have the appearance of several independent modes, including local buckling, lateraltorsional buckling, shear buckling, and distortional buckling. The dominant buckling mode is dependent on the cope geometry. Short copes are controlled by shear buckling and long copes are controlled by lateral-torsional buckling, with some aspects of local buckling and distortional buckling present in all cope geometries. Because the buckled shapes most closely resemble lateral-torsional buckling over the critical variable range, the design model is based on Eq. 11 with the buckling modification factor, C_{b}, accounting for contributions from the other buckling modes. C_{b} was determined by curve fitting the finite element data.

The required flexural strength at the face of the cope is

$$
\begin{equation*}
M_{r}=R_{r} e_{\min } \tag{12}
\end{equation*}
$$

The nominal moment is calculated with Eq. 10 and 11 with $t=t_{w}$ and $d=h_{0}$. The equation for C_{b} is dependent on the c_{t} / c_{b} ratio. For beams with $c_{t}=c_{b}, C_{b}$ is calculated using Eq. 13 with $L_{b}=c_{t}=c_{b}$. For beams with $c_{t}<c_{b}, C_{b}$ is calculated using Eq. 13 with $L_{b}=0.9 c_{t}+$ $0.1 c_{b}$.

$$
\begin{equation*}
C_{b}=\left[3.3+0.85 \sqrt{\frac{d}{L_{b}}} \ln \left(\frac{L_{b}}{d}\right)\right]\left[1-\frac{d_{c t}}{d}+\left(\frac{d_{c t}}{d}\right)^{2}\right] \tag{13}
\end{equation*}
$$

For beams with $c_{t}>c_{b}, C_{b}$ is calculated using Eq. 14 with $L_{b}=\left(c_{t}+c_{b}\right) / 2$.

$$
\begin{equation*}
C_{b}=\left(\frac{c_{b}}{c_{t}}\right)\left[3.3+0.85 \sqrt{\frac{d}{L_{b}}} \ln \left(\frac{L_{b}}{d}\right)\right]\left[1-\frac{d_{c t}}{d}+\left(\frac{d_{c t}}{d}\right)^{2}\right] \tag{14}
\end{equation*}
$$

where
$c_{b}=$ length of bottom cope, in.
$c_{t}=$ length of top cope, in.
$d_{c b}=$ depth of bottom cope, in.
$d_{c t}=$ depth of top cope, in.
$e_{b}=$ distance from the face of the bottom cope to the end reaction, in.
$e_{t}=$ distance from the face of the top cope to the end reaction, in.
$e_{\text {min }}=$ minimum of e_{t} and e_{b}

The results for all models are listed in Tables A1, A2 and A3 in Appendix A. For beams with $c_{t}=c_{b}$, the average finite element-to-calculated load ratio is 1.01 and the standard deviation is 0.0535 . For $c_{t}<c_{b}$, the average load ratio is 1.02 and the standard deviation is 0.0902 . For $c_{t}>c_{b}$, the average load ratio is 1.06 and the standard deviation is 0.0752 .

Eq. 13 is plotted in Fig. 4 and 5 with the finite element results for $c_{t}=c_{b}$. Fig. 4 shows C_{b} versus c_{t} / d for four values of $d_{c t} / d$. Fig. 5 shows C_{b} versus $d_{c t} / d$ for four values of c_{t} / d.

Figure 4. C_{b} versus c_{t} / d

Figure 5. C_{b} versus $d_{c t} / d$

5. Design Proposal

To account for inelastic action, AISC Specification Section F11 can be used with $t=t_{w}$ and $d=h_{0}$. For short cope lengths, the required shear load can be close to the shear yield strength. To account for the interaction between the flexural and shear loads, a reduction factor can be applied to the plastic moment capacity, M_{p}. Neal (1961) presented Eq. 15 for the plastic capacity of a rectangular member subjected to moment about one axis, axial load, and shear.

$$
\begin{equation*}
\frac{M_{r}}{M_{p}}+\left(\frac{P_{r}}{P_{y}}\right)^{2}+\frac{\left(\frac{R_{r}}{V_{n}}\right)^{4}}{1-\left(\frac{P_{r}}{P_{y}}\right)^{2}} \leq 1.0 \tag{15}
\end{equation*}
$$

where
$P_{r}=$ required axial load, kips
$P_{y}=$ axial yield load, kips
$R_{r}=$ required shear load, kips
$V_{n}=$ shear yield strength, kips
The plastic moment strength, reduced to account for the required shear load is

$$
\begin{equation*}
M_{p v}=M_{p}\left[1-\left(\frac{R_{r}}{V_{n}}\right)^{4}\right] \tag{16}
\end{equation*}
$$

The following design procedure is suggested:
For yielding, $\lambda \leq \lambda_{p}$

$$
\begin{equation*}
M_{n}=M_{p v} \tag{17}
\end{equation*}
$$

For inelastic lateral-torsional buckling, $\lambda_{p}<\lambda \leq \lambda_{r}$

$$
\begin{equation*}
M_{n}=C_{b}\left[1.52-0.274 \lambda \frac{F_{y}}{E}\right] M_{y} \leq M_{p v} \tag{18}
\end{equation*}
$$

For elastic lateral-torsional buckling, $\lambda>\lambda_{r}$

$$
\begin{equation*}
M_{n}=F_{c r} S_{x} \leq M_{p v} \tag{19}
\end{equation*}
$$

The critical stress is

$$
\begin{equation*}
F_{c r}=\frac{1.9 E C_{b}}{\lambda} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\frac{L_{b} h_{0}}{t_{w}^{2}} \tag{21}
\end{equation*}
$$

$$
\begin{gather*}
\lambda_{p}=\frac{0.08 E}{F_{y}} \tag{22}\\
\lambda_{r}=\frac{1.9 E}{F_{y}} \tag{23}
\end{gather*}
$$

Simplified versions of Eq. 13 and 14 can be used for design purposes. For beams with $c_{t}=$ c_{b} and beams with $c_{t}<c_{b}, L_{b}=c_{t}$ and C_{b} is calculated with Eq. 24.

$$
\begin{equation*}
C_{b}=\left[3+\ln \left(\frac{L_{b}}{d}\right)\right]\left(1-\frac{d_{c t}}{d}\right) \tag{24}
\end{equation*}
$$

For beams with $c_{t}>c_{b}, L_{b}=\left(c_{t}+c_{b}\right) / 2$ and C_{b} is calculated with Eq. 25.

$$
\begin{equation*}
C_{b}=\left(\frac{c_{b}}{c_{t}}\right)\left[3+\ln \left(\frac{L_{b}}{d}\right)\right]\left(1-\frac{d_{c t}}{d}\right) \tag{25}
\end{equation*}
$$

The simplified equations are compared to the finite element models in Appendix A Tables A1, A2 and A3. For beams with $c_{t}=c_{b}$, the average finite element-to-calculated load ratio is 1.18 and the standard deviation is 0.139 . For $c_{t}<c_{b}$, the average load ratio is 1.05 and the standard deviation is 0.0736 . For $c_{t}>c_{b}$, the average load ratio is 1.19 and the standard deviation is 0.0949 .

6. Conclusions

This paper addressed three issues related to the localized web stability of double-coped beams: 1 . Cope depths greater than 20% of the beam depth, 2 . Unequal cope depths at the top and bottom, 3. Unequal cope lengths at the top and bottom. 54 elastic finite element models were used to determine the effect of each variable on the critical load. A semiempirical design model, with lateral-torsional buckling as the basis, was used to formulate equations to predict localized web buckling of double-coped beams. A buckling modification factor was determined by curve fitting the finite element data.

All of the finite element models buckled in a similar manner, with the tension edge of the coped cross section translating laterally and the shear center of the coped region experiencing lateral translation and twisting. The compression edge of the coped section buckled in the shape of a half sine wave, which extended partially into the uncoped portion of the beam due to lateral translation at the reentrant corner of the cope.

Because the shapes most closely resemble lateral-torsional buckling over the critical variable range, the design model was based on AISC Specification Section F11, with the buckling modification factor, C_{b}, determined by curve fitting the finite element data. For the curve-fit equations, the average finite element-to-calculated load ratio is 1.02 and the standard deviation is 0.0665 . The simplified design equations had an average finite element-to-calculated load ratio of 1.15 and a standard deviation of 0.115 .

Acknowledgments

Thanks to Professor Joseph Yura at The University of Texas at Austin for providing the finite element program, BASP, used in this study.

Nomenclature

$C_{b}=$ lateral-torsional buckling modification factor
$E=$ modulus of elasticity, ksi
$F_{c r}=$ critical stress, ksi
$F_{y}=$ specified minimum yield stress, ksi
$L_{b}=$ distance between brace points, in.
$M_{n}=$ nominal moment, kip-in.
$M_{y}=$ yield moment, kip-in.
$M_{p}=$ plastic moment, kip-in.
$M_{p v} \quad=$ plastic moment, reduced to account for the required shear load, kip-in.
$M_{r}=$ required moment, kip-in.
$P_{r}=$ required axial load, kips
$P_{y}=$ axial yield load, kips
$Q=$ reduction factor for plate buckling
$R_{d e} \quad=$ critical reaction with C_{b} calculated with the simplified design equation
$R_{f e}=$ critical reaction from finite element model
$R_{r}=$ required end reaction, kips
$R_{r e}=$ critical reaction with C_{b} calculated with the original regression equation
$S_{n e t}=$ elastic section modulus of the coped section, in. ${ }^{3}$
$S_{x}=$ elastic section modulus, in. ${ }^{3}$
$V_{n}=$ shear yield strength, kips
$Z=$ plastic modulus, in. ${ }^{3}$
c = cope length, in.
$c_{b}=$ length of bottom cope, in.
$c_{t}=$ length of top cope, in.
$d=$ beam depth, in.
$d_{c b}=$ depth of bottom cope, in.
$d_{c t}=$ depth of top cope, in.
$e=$ distance from the face of the cope to the end reaction, in.
$e_{b}=$ distance from the face of the bottom cope to the end reaction, in.
$e_{t}=$ distance from the face of the top cope to the end reaction, in.
$e_{\text {min }}=$ minimum of e_{t} and e_{b}
$f_{d}=$ adjustment factor
$h_{o}=$ reduced depth of web, in.
$t=$ beam width, in.
$t_{w}=$ web thickness, in.
$\lambda \quad$ slenderness parameter
$\lambda_{p}=$ limiting slenderness for the limit state of yielding
$\lambda_{r}=$ limiting slenderness for the limit state of inelastic lateral-torsional buckling

References

AISC (2010), Specification for Structural Steel Buildings, June 22, American Institute of Steel Construction, Chicago, IL.
AISC (2011), Steel Construction Manual, $14^{\text {th }}$ Edition, American Institute of Steel Construction, Chicago, IL.
Akay, H. U., Johnson, C. P., and Will, K. M. (1977), "Lateral and Local Buckling of Beams and Frames," Journal of the Structural Division, ASCE, Vol. 103, No. ST9, September, pp. 1821-1832.
Cheng, J.J., Yura, J.A., and Johnson, C.P. (1984), "Design and Behavior of Coped Beam," Ferguson Lab Report, The University of Texas at Austin, July.
Muir, L.S. and Thornton, W.A. (2004), "A Direct Method for Obtaining the Plate Buckling Coefficient for DoubleCoped Beams," Engineering Journal, American Institute of Steel Construction, Third Quarter, Chicago, IL.
Neal, B.G. (1961), "The Effect of Shear and Normal Forces on the Fully Plastic Moment of a Beam of Rectangular Cross Section," Journal of Applied Mechanics, Vol. 28, pp. 269-274.
Timoshenko, S. P. and Gere, J. M. (1961), Theory of Elastic Stability, Second Edition, Mcgraw-Hill, New York.

Appendix A. Tables

[^0]: ${ }^{1}$ Principal, ARC International, LLC, bo@arcstructural.com
 ${ }^{2}$ Assistant Project Manager, LBYD, Inc., rwhyte@1byd.com

