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Abstract 
In beam-to-girder connections, the beam is usually coped to allow a standard connection to 
the girder web. If the beam and girder are of equal depth, both flanges must be coped. Due 
to the flexural and shear stresses in the coped portion of the web, web buckling can limit the 
local strength. The AISC Steel Construction Manual provides a design procedure for web 
buckling of double-coped beams. However, the equations are not valid if the cope depth 
exceeds 20% of the beam depth. Although the design equations were developed for beams 
with equal cope sizes at the top and bottom, it is common for the cope sizes to be unequal. 
This research addresses three issues related to the local stability of double-coped beams: 1. 
Cope depths greater than 20% of the beam depth, 2. Unequal cope depths at the top and 
bottom, 3. Unequal cope lengths at the top and bottom. 54 elastic finite element models 
were used to determine the effect of each variable on the critical load. A semi-empirical 
design model, with lateral-torsional buckling as the basis, was used to formulate equations 
to predict localized web buckling of double-coped beams. A buckling modification factor 
was determined by curve fitting the finite element data. 
 
1. Introduction 
In beam-to-girder connections, the beam is usually coped to allow a standard connection to 
the girder web. If the beam and girder are of equal depth, both flanges must be coped as 
shown in Fig. 1. The cope length can be large at skewed beam connections, connections to 
wide flange truss chords, and other less common framing conditions. Additionally, it is 
common for double-coped beams to have unequal cope depths at the top and the bottom, and 
some connections require unequal cope lengths at the top and bottom flange. 

 
Due to the flexural and shear stresses in the coped portion of the web, web buckling can 
limit the local strength. The AISC Steel Construction Manual (AISC, 2011), provides a 
semi-empirical design procedure for localized stability of double-coped beams. The 
procedure was developed by Cheng et al. (1984) based on a lateral-torsional buckling model 
with an adjustment factor determined by curve fitting data from elastic finite element 
models. Because the adjustment factor was derived empirically, limits of applicability were 
placed on the design equations. The design procedure is not valid if the cope length exceeds 
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twice the beam depth or the cope depth exceeds 20% of the beam depth. All of the models 
had equal cope sizes at both the top and the bottom.  
  

 
 

Figure 1. Double-Coped Beam 
 
In many practical cases, the cope geometry falls outside the limits of applicability of the 
AISC Manual procedure. This paper addresses three issues related to the localized web 
stability of double-coped beams: 1. Cope depths greater than 20% of the beam depth, 2. 
Unequal cope depths at the top and bottom, 3. Unequal cope lengths at the top and bottom. 
54 elastic finite element models were used to determine the effect of each variable on the 
critical load. 
 
2. Existing Publications 
 
2.1 Cheng et al. (1984) 
Cheng et al. (1984) developed the design procedure in the AISC Steel Construction Manual 
(AISC, 2011) with the results of 14 elastic finite element models. BASP finite element 
software was used as described by Akay et al. (1977). The models were braced laterally at 
the face of the compression flange cope. The buckled shapes showed that the tension edge 
of the coped cross section experienced lateral movement and the shear center of the coped 
region experienced lateral movement and twisting. The semi-empirical design procedure 
was developed based on a lateral-torsional buckling model with an adjustment factor 
determined by curve fitting data from the finite element models. All of the models had equal 
cope sizes at both the top and the bottom.  
 
2.2 Steel Construction Manual (AISC, 2011) 
The model for the design procedure developed by Cheng et al. (1984) is shown in Fig. 1. 
The required flexural strength at the face of the cope is 
 

Mr = Rre (1)
 
The nominal flexural strength is 
 

Mn = FcrSnet (2)
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The critical stress is 
 

2

0
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cr d y

tF E f F
ch

= π ≤.  (3)

  
The adjustment factor is 
 

3 5 7 5. . ct
d

df
d

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (4)

 
where 
 E  = modulus of elasticity, ksi 
 Fy  = specified minimum yield stress, ksi 
 Rr  = required end reaction, kips 
 Snet = section modulus of the coped section, in.3 
 c  = cope length, in. 
 d  = beam depth, in. 
 dct  = depth of the top cope, in. 
 e  = distance from the face of the cope to the end reaction, in. 
 ho  = reduced depth of web, in. 
 tw  = web thickness, in. 
 
The preceding equations are based on a lateral-torsional buckling model and are valid when 
c ≤ 2d and dc ≤ 0.2d. If dc > 0.2d, the following equations, which are based on a plate 
buckling model (Muir and Thornton, 2004), are applicable. 
 

cr yF F Q=  (5)
 
The reduction factor for plate buckling is 
 
  When λ ≤ 0.7 
 

Q =10.  (6a)
 
  When 0.7 < λ ≤ 1.41  
 

1.34 0.486Q = − λ  (6b)
 
  When λ > 1.41 
 

2

1 30.Q =
λ

 (6c)
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The slenderness parameter is 
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(7)

 
2.3 AISC Specification Section F11 
Because the Manual equations developed by Cheng et al. (1984) were based on a lateral-
torsional buckling model, AISC Specification (AISC, 2010) Section F11 will be reviewed 
here. Section F11 provides design information for the flexural strength and stability of 
rectangular members bent about their major axis. 
 

For yielding, 2

0 08b

y

L d E
t F

≤
.  

 
1 6n p y yM M F Z M= = ≤ .  (8)

 

For inelastic lateral-torsional buckling, 2
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For elastic lateral-torsional buckling, 2

1 9b

y

L d E
t F

>
.  

 
n cr x pM F S M= ≤  (10)

 
The critical stress is 
 

2

1 9 b
cr

b

ECF
L d
t

=
.  (11)

 
where 
 Cb  = lateral-torsional buckling modification factor 
 Lb  = distance between brace points, in. 
 Mn  = nominal moment, kip-in. 
 My  = yield moment, kip-in. 
 Mp  = plastic moment, kip-in. 
 Sx  = elastic section modulus, in.3 
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 Z  = plastic modulus, in.3 

 t  = beam width, in. 
 
Eq. 11 is the theoretical solution for lateral-torsional buckling (Timoshenko and Gere, 1961) 
multiplied by Cb and simplified by substituting the properties for a rectangular cross section. 
It can be shown that Eq. 3 is equal to Eq. 11 by substituting t = tw, d = h0, Lb = c and Cb = fd 
into Eq. 11. Therefore, fd is simply a lateral-torsional buckling modification factor applied 
to the theoretical equation for the critical moment of a rectangular beam. 
 
3. Finite Element Models 
AISC Specification Section F2 equations for lateral-torsional buckling of wide flange beams 
are based on the theoretical solution (Timoshenko and Gere, 1961), with Cb factors 
developed primarily using elastic finite element models. The inelastic portion of the 
buckling curve was developed by mapping, based on limited testing and finite element 
results in the inelastic zone. Because much of the inelastic research was based on a constant 
moment along the beam length (Cb = 1), the full beam length was inelastic. Therefore, the 
buckling curves are conservative for Cb > 1, because they don’t account for partial 
inelasticity along the beam. This same procedure was used in this research to develop 
equations for the local stability of coped beams.  
 
The finite element program was designed to address three issues related to the local stability 
of double-coped beams: 1. Cope depths greater than 20% of the beam depth, 2. Unequal 
cope depths at the top and bottom, 3. Unequal cope lengths at the top and bottom. 54 elastic 
finite element models were used to determine the effect of each variable on the critical load. 
Using the variables shown in Fig. 2, the program consisted of 30 models with ct = cb, 12 
models with ct > cb, and 12 models with ct < cb. The details are listed in Appendix A Tables 
A1, A2 and A3, respectively. 
 

 
 

Figure 2. Different Cope Sizes at the Top and Bottom Flanges 
 
All models were built with the nominal dimensions of a W16x26. Following the modeling 
techniques of Cheng et al. (1984), BASP finite element software was used to determine the 
critical loads, and the flanges were braced laterally at the face of the cope.  
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4. Results 
All of the finite element models buckled in a similar manner as shown in Fig. 3. Confirming 
the results of Cheng et al. (1984), the tension edge of the coped cross section experienced 
lateral translation and the shear center experienced lateral translation and twisting. The 
compression edge of the coped section buckled in the shape of a half sine wave, which 
extended partially into the uncoped portion of the beam due to lateral translation at the 
reentrant corner of the cope. 
 

 
 

a. ct = cb 

 
 

b. ct > cb 

 
 

c. ct < cb 
 

Figure 3. Buckled Shapes 
 
To form a semi-empirical design model, the buckling mode must be identified. The buckled 
shapes have the appearance of several independent modes, including local buckling, lateral-
torsional buckling, shear buckling, and distortional buckling. The dominant buckling mode 
is dependent on the cope geometry. Short copes are controlled by shear buckling and long 
copes are controlled by lateral-torsional buckling, with some aspects of local buckling and 
distortional buckling present in all cope geometries. Because the buckled shapes most 
closely resemble lateral-torsional buckling over the critical variable range, the design model 
is based on Eq. 11 with the buckling modification factor, Cb, accounting for contributions 
from the other buckling modes. Cb was determined by curve fitting the finite element data. 
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The required flexural strength at the face of the cope is 
 

Mr = Rremin (12)
 
The nominal moment is calculated with Eq. 10 and 11 with t = tw and d = h0. The equation 
for Cb is dependent on the ct/cb ratio. For beams with ct = cb, Cb is calculated using Eq. 13 
with Lb = ct = cb. For beams with ct < cb, Cb is calculated using Eq. 13 with Lb = 0.9ct + 
0.1cb. 
 

2

3 3 0 85 1b ct ct
b

b

L d ddC
L d d d

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞= + − +⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. . ln  (13)

 
For beams with ct > cb, Cb is calculated using Eq. 14 with Lb = (ct + cb)/2. 
 

2

3 3 0 85 1b b ct ct
b

t b

c L d ddC
c L d d d

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − +⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦

. . ln  (14)

 
where 

cb  = length of bottom cope, in. 
ct  = length of top cope, in. 
dcb  = depth of bottom cope, in. 
dct  = depth of top cope, in. 

 eb   = distance from the face of the bottom cope to the end reaction, in. 
 et  = distance from the face of the top cope to the end reaction, in. 

emin  = minimum of et and eb 
 
The results for all models are listed in Tables A1, A2 and A3 in Appendix A. For beams 
with ct = cb, the average finite element-to-calculated load ratio is 1.01 and the standard 
deviation is 0.0535. For ct < cb, the average load ratio is 1.02 and the standard deviation is 
0.0902. For ct > cb, the average load ratio is 1.06 and the standard deviation is 0.0752. 
 
Eq. 13 is plotted in Fig. 4 and 5 with the finite element results for ct = cb. Fig. 4 shows Cb 
versus ct/d for four values of dct/d. Fig. 5 shows Cb versus dct/d for four values of ct/d. 
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Figure 4. Cb versus ct/d 
 
 

 
 

Figure 5. Cb versus dct/d 
 

5. Design Proposal 
To account for inelastic action, AISC Specification Section F11 can be used with t = tw and 
d = h0. For short cope lengths, the required shear load can be close to the shear yield 
strength. To account for the interaction between the flexural and shear loads, a reduction 
factor can be applied to the plastic moment capacity, Mp. Neal (1961) presented Eq. 15 for 
the plastic capacity of a rectangular member subjected to moment about one axis, axial load, 
and shear. 
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where 

Pr  = required axial load, kips 
Py  = axial yield load, kips 
Rr  = required shear load, kips 

 Vn = shear yield strength, kips 
 
The plastic moment strength, reduced to account for the required shear load is 
 

4

1 r
pv p

n

RM M
V

⎡ ⎤⎛ ⎞
⎢ ⎥= − ⎜ ⎟
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 (16)

 
The following design procedure is suggested: 
For yielding, pλ ≤ λ  
 

n pvM M=  (17)
 
For inelastic lateral-torsional buckling, p rλ < λ ≤ λ  
 

1 52 0 274 y
n b y pv

F
M C M M
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For elastic lateral-torsional buckling, rλ > λ  
 

n cr x pvM F S M= ≤  (19)
 
The critical stress is 
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Simplified versions of Eq. 13 and 14 can be used for design purposes. For beams with ct = 
cb and beams with ct < cb, Lb = ct and Cb is calculated with Eq. 24. 
 

3 1b ct
b

L dC
d d

⎡ ⎤⎛ ⎞ ⎛ ⎞= + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦
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For beams with ct > cb, Lb = (ct + cb)/2 and Cb is calculated with Eq. 25. 
 

3 1b b ct
b

t

c L dC
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⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟
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The simplified equations are compared to the finite element models in Appendix A Tables 
A1, A2 and A3. For beams with ct = cb, the average finite element-to-calculated load ratio is 
1.18 and the standard deviation is 0.139. For ct < cb, the average load ratio is 1.05 and the 
standard deviation is 0.0736. For ct > cb, the average load ratio is 1.19 and the standard 
deviation is 0.0949. 
 
6. Conclusions 
This paper addressed three issues related to the localized web stability of double-coped 
beams: 1. Cope depths greater than 20% of the beam depth, 2. Unequal cope depths at the 
top and bottom, 3. Unequal cope lengths at the top and bottom. 54 elastic finite element 
models were used to determine the effect of each variable on the critical load. A semi-
empirical design model, with lateral-torsional buckling as the basis, was used to formulate 
equations to predict localized web buckling of double-coped beams. A buckling 
modification factor was determined by curve fitting the finite element data. 
 
All of the finite element models buckled in a similar manner, with the tension edge of the 
coped cross section translating laterally and the shear center of the coped region 
experiencing lateral translation and twisting. The compression edge of the coped section 
buckled in the shape of a half sine wave, which extended partially into the uncoped portion 
of the beam due to lateral translation at the reentrant corner of the cope. 
 
Because the shapes most closely resemble lateral-torsional buckling over the critical 
variable range, the design model was based on AISC Specification Section F11, with the 
buckling modification factor, Cb, determined by curve fitting the finite element data. For the 
curve-fit equations, the average finite element-to-calculated load ratio is 1.02 and the 
standard deviation is 0.0665. The simplified design equations had an average finite element-
to-calculated load ratio of 1.15 and a standard deviation of 0.115. 
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Nomenclature 
Cb  = lateral-torsional buckling modification factor 
E   = modulus of elasticity, ksi 
Fcr  = critical stress, ksi 
Fy   = specified minimum yield stress, ksi 
Lb   = distance between brace points, in. 
Mn   = nominal moment, kip-in. 
My   = yield moment, kip-in. 
Mp   = plastic moment, kip-in. 
Mpv  = plastic moment, reduced to account for the required shear load, kip-in. 
Mr   = required moment, kip-in. 
Pr   = required axial load, kips 
Py   = axial yield load, kips 
Q   = reduction factor for plate buckling 
Rde   = critical reaction with Cb calculated with the simplified design equation 
Rfe  = critical reaction from finite element model  
Rr   = required end reaction, kips 
Rre  = critical reaction with Cb calculated with the original regression equation 
Snet  = elastic section modulus of the coped section, in.3 
Sx   = elastic section modulus, in.3 

Vn   = shear yield strength, kips 
Z   = plastic modulus, in.3 

c   = cope length, in. 
cb   = length of bottom cope, in. 
ct   = length of top cope, in. 
d   = beam depth, in. 
dcb   = depth of bottom cope, in. 
dct   = depth of top cope, in. 
e   = distance from the face of the cope to the end reaction, in. 
eb   = distance from the face of the bottom cope to the end reaction, in. 
et   = distance from the face of the top cope to the end reaction, in. 
emin  = minimum of et and eb 
fd   = adjustment factor 
ho   = reduced depth of web, in. 
t   = beam width, in. 
tw   = web thickness, in. 
λ   = slenderness parameter 
λp = limiting slenderness for the limit state of yielding 
λr  = limiting slenderness for the limit state of inelastic lateral-torsional buckling 
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Appendix A. Tables 
 

Table A1. Finite element results with ct = cb 

Model 
No. 

ct 
in. 

cb 
in. 

dct 
in. 

dcb 
in. 

Rfe 
kips 

Rre 
kips 

Rde 
kips 

fe

re

R

R
 fe

de

R

R
 

1 15.4 15.4 1.71 1.71 24.4 22.7 20.3 1.07 1.20 
2 15.4 15.4 3.24 1.71 19.3 18.4 15.8 1.05 1.22 
3 15.4 15.4 4.78 1.71 15.6 14.9 11.9 1.05 1.31 
4 15.4 15.4 6.31 1.71 12.6 11.9 8.53 1.06 1.48 
5 15.4 15.4 1.71 3.24 20.9 19.9 17.8 1.05 1.18 
6 15.4 15.4 3.24 3.24 16.3 15.8 13.6 1.04 1.20 
7 15.4 15.4 4.78 3.24 12.9 12.4 9.92 1.04 1.30 
8 15.4 15.4 1.71 4.78 17.6 17.0 15.3 1.03 1.15 
9 15.4 15.4 3.24 4.78 13.4 13.1 11.3 1.02 1.19 

10 15.4 15.4 1.71 6.31 14.3 14.2 12.7 1.01 1.13 
11 30.7 30.7 1.71 1.71 6.09 6.42 6.27 0.948 0.970 
12 30.7 30.7 3.24 1.71 5.16 5.20 4.88 0.992 1.06 
13 30.7 30.7 4.78 1.71 4.36 4.20 3.67 1.04 1.19 
14 30.7 30.7 6.31 1.71 3.63 3.37 2.63 1.08 1.38 
15 30.7 30.7 1.71 3.24 5.22 5.62 5.49 0.930 0.951 
16 30.7 30.7 3.24 3.24 4.34 4.46 4.19 0.973 1.04 
17 30.7 30.7 4.78 3.24 3.57 3.50 3.06 1.02 1.17 
18 30.7 30.7 1.71 4.78 4.41 4.81 4.70 0.915 0.937 
19 30.7 30.7 3.24 4.78 3.57 3.71 3.49 0.961 1.02 
20 30.7 30.7 1.71 6.31 3.63 4.01 3.92 0.906 0.927 
21 7.68 7.68 4.78 1.71 41.6 44.1 36.6 0.945 1.14 
22 7.68 7.68 6.31 1.71 31.5 35.4 26.2 0.891 1.20 
23 7.68 7.68 4.78 3.24 37.4 36.7 30.5 1.02 1.23 
24 23.0 23.0 4.78 1.71 7.51 7.19 6.01 1.04 1.25 
25 23.0 23.0 6.31 1.71 6.22 5.77 4.31 1.08 1.44 
26 23.0 23.0 4.78 3.24 6.15 5.99 5.01 1.03 1.23 
27 7.68 7.68 4.78 4.78 31.8 29.4 24.4 1.08 1.31 
28 15.4 15.4 4.78 4.78 10.3 9.91 7.94 1.04 1.29 
29 23.0 23.0 4.78 4.78 4.87 4.79 4.01 1.02 1.21 
30 30.7 30.7 4.78 4.78 2.83 2.80 2.45 1.01 1.16 

 

   
Average 1.01 1.18 

Std. Deviation 0.0535 0.139 
   

Rfe = critical reaction from finite element model  
Rre = critical reaction with Cb calculated with the original regression equation 
Rde = critical reaction with Cb calculated with the simplified design equation 
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Table A2. Finite element results with ct > cb 

Model 
No. 

ct 
in. 

cb 
in. 

dct 
in. 

dcb 
in. 

Rfe 
kips 

Rre 
kips 

Rde 
kips 

fe

re

R

R
 fe

de

R

R
 

32 30.7 15.4 3.24 3.24 6.87 5.72 5.14 1.20 1.33 
34 30.7 15.4 1.71 1.71 8.27 8.24 7.71 1.00 1.07 
36 30.7 15.4 1.71 3.24 7.69 7.21 6.74 1.07 1.14 
38 30.7 15.4 3.24 1.71 7.41 6.67 6.00 1.11 1.23 
40 15.4 7.68 3.24 3.24 20.5 19.2 16.4 1.07 1.25 
42 15.4 7.68 1.71 1.71 27.9 27.6 24.5 1.01 1.14 
44 15.4 7.68 1.71 3.24 25.7 24.2 21.4 1.06 1.20 
46 15.4 7.68 3.24 1.71 22.3 22.4 19.1 0.995 1.17 
48 30.7 7.68 3.24 3.24 7.94 6.64 5.84 1.19 1.36 
50 30.7 7.68 1.71 1.71 9.10 9.57 8.75 0.952 1.04 
52 30.7 7.68 1.71 3.24 8.79 8.37 7.65 1.05 1.15 
54 30.7 7.68 3.24 1.71 8.25 7.75 6.81 1.06 1.21 

 

   
Average 1.06 1.19 

Std. Deviation 0.0752 0.0949 
   

Rfe = critical reaction from finite element model  
Rre = critical reaction with Cb calculated with the original regression equation 
Rde = critical reaction with Cb calculated with the simplified design equation 

 
 
 
 
 

Table A3. Finite element results with ct < cb 

Model 
No. 

ct 
in. 

cb 
in. 

dct 
in. 

dcb 
in. 

Rfe 
kips 

Rre 
kips 

Rde 
kips 

fe

re

R

R
 fe

de

R

R
 

31 15.4 30.7 3.24 3.24 14.1 14.7 13.6 0.959 1.04 
33 15.4 30.7 1.71 1.71 21.3 21.1 20.3 1.01 1.05 
35 15.4 30.7 1.71 3.24 18.5 18.5 17.8 1.00 1.04 
37 15.4 30.7 3.24 1.71 16.5 17.1 15.8 0.962 1.04 
39 7.68 15.4 3.24 3.24 42.8 45.1 41.7 0.948 1.03 
41 7.68 15.4 1.71 1.71 72.6 65.0 62.4 1.12 1.16 
43 7.68 15.4 1.71 3.24 64.4 56.9 54.6 1.13 1.18 
45 7.68 15.4 3.24 1.71 48.7 52.6 48.6 0.926 1.00 
47 7.68 30.7 3.24 3.24 40.3 41.7 41.7 0.967 0.967 
49 7.68 30.7 1.71 1.71 68.3 60.0 62.4 1.14 1.09 
51 7.68 30.7 1.71 3.24 61.3 52.5 54.6 1.17 1.12 
53 7.68 30.7 3.24 1.71 45.5 48.6 48.6 0.936 0.936 

 

   
Average 1.02 1.05 

Std. Deviation 0.0902 0.0736 
   

Rfe = critical reaction from finite element model 
Rre = critical reaction with Cb calculated with the original regression equation 
Rde = critical reaction with Cb calculated with the simplified design equation 
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