

MERITAWARD

LESS THAN \$10M

Augen Optical Laboratories ENSENADA, B.C. MEXICO

JUROR COMMENT:

Beautiful integration of structure and architecture the cylindrical shell has a fantastic sculptural quality.

ugen Optical Laboratories is a wholly Mexicanowned company established for research and development of technologies for the fabrication of plastic optical lenses. This project consisted of an expansion of a currently existing facility producing plastic optical lenses formerly imported from the U.S.

Two principal buildings were designed for this expansion: one circularshaped four-story research building and an office and laboratory building completely separate from the tower yet operationally integrated with it.

The tower is comprised of a cylindrical steel shell, 10 m (33') in diameter, serving the two-fold purpose of carrying the vertical gravity loads as well providing the necessary strength to resist the horizontal seismic and wind forces. The city of Ensenada is located in a high-wind/seismic zone similar to the San Diego area, which lies about 65 miles north of Ensenada.

The structure of the cylindrical shell contains 16 W10×26 perimeter columns supporting wall panels made out of 3/s" plate which is curved and stiffened in order to provide interesting openings for natural light and ventilation, as well as the necessary strength.

Each floor consists of a series of radial horizontal beams meeting at the center of the circle and running in radial form, simply supported by the perimeter columns. All beams meet at

STRUCTURAL ENGINEER

Enrique Martinez Romero, S.A. Consulting Engineers, Colonia Condesa, Mexico

ARCHITECT

Taller de Arquitectura X, Mexico, D.F., Mexico

GENERAL CONTRACTOR

ABSA Coonstrucciones, Mexico, D.F., Mexico

SOFTWARE SAP 2000 the center in a circular plate supporting a king post from which tension rods connect with clevises, forming a series of radial post-and-beam trusses.

A concrete slab was poured on top of these beams and acts compositely with the beams through the use of shear-connectors.

An external stairway provides the access to each floor, surrounding the building like a graceful spiral.

The natural ventilation and illumination of the tower was attained through the very ingenious architectural shape of the external steel shell in combination with horizontal plate-stiffeners, providing the necessary structural strength to support the horizontal and gravity forces. A SAP2000 model of the tower was used in its structural design.

The office and laboratory building has a semi-circular shape and consists of a concrete-roof supported by radial rigid frames incorporating lean-to columns. The external columns consist of circular tubes in a "V" arrangement.

The first high mezzanine is suspended from the roof-beams through tension rods creating large column-free areas. Likewise, the main floor is also structured with steel radial beams receiving secondary curved joist beams. The floor consists of steel metal deck with 5 cm (2") of concrete topping. A second lower mezzanine is suspended as well from the main floor beams, creating a partial-underground level. Advantages of this structural system include:

- Meets the owner's need for large column-free areas with excellent natural lighting and ventilation to accommodate the special research laboratories and offices.
- Integrates the skin steel plates and vertical columns of the tower perimeter to give the necessary strength and stiffness to resist a high earthquake and wind loads of the region.
- Provides the necessary strength and serviceability (vibration, drift-control).
- Reduces construction cost due to the avoidance of special architectural finishes (floor, false ceilings, cladding, HVAC ducts, etc.)