Joining Forces

AISC's Steel Design Specifications Merge in 2005

By Cynthia J. Duncan

he new 2005 unified design specification for structural steel buildings will combine individual ASD and LRFD specifications with one document. The document is on schedule for completion in early 2005, and will replace the two existing AISC building design specifications: the 1989 *Specification for Structural Steel Buildings-Allowable Stress Design (ASD) and Plastic Design* and the 1999 *Load and Resistance Factor Design Specification (LRFD) for Structural Steel Buildings.*

It also will replace the two AISC special-member design specifications, the 2000 *Load and Resistance Factor Design Specification for Steel Hollow Structural Sections*, and the 2000 *Load and Resistance Factor Design Specification for Single-Angle Members*. This means that all HSS and single-angle member and connection-design provisions will be incorporated into the 2005 specification. The organization of the combined specifications is very similar to the existing individual specifications to ease the transition to the new document.

continued next page

It's No Longer ASD vs. LRFD

By Jason Ericksen, Senior Advisor, Steel Solutions Center

n 2005, AISC will issue a new specification for structural steel buildings that will supersede both of the existing specifications (Allowable Stress Design and Load & Resistance Factor Design). This new unified specification will reflect the current state of engineering knowledge and allow engineers to use either factored loads or service loads in their calculations. As Louis Geschwindner, AISC Vice President of Engineering and Research, said: "There is no intention to phase out ASD. As long as ASCE 7 has service-load combinations, there will be ASD design procedures."

Rightly or wrongly, when the *LRFD Specification* was introduced in 1986, it was widely viewed as a difficult design methodology foisted on the industry by the academic community. The new unified specification should avoid those difficulties if for no other reason than that more than two-thirds of the current Committee on Specifications, including the current chair, comes from either the design community or fabrication industry. According to Geschwindner, the new specification:

- · is practice oriented.
- provides economical designs.

 meets the engineering requirement of providing safe designs with predictable behavior and response.

A key reason that ASD often was viewed as easier than LRFD (besides the obvious factors of familiarity and resistance to change) is that the current ASD Specification essentially is unchanged since 1961. If AISC had never introduced LRFD but had instead simply updated ASD design procedures, then ASD would look a lot like LRFD. In discussing this issue, Geschwindner often relates the story of the designer who stated that "If I have to do leaning columns in LRFD then I'm going to use ASD." But steel doesn't know whether you're using LRFD or ASD—and there are still leaning columns!

The limit states for both methods are the same—and always have been. And you can easily look at using stress as opposed to member strength: If you follow the math, allowable bending stress is $(Z/S)^*0.6F_y$. If (Z/S) is taken as 1.1, as was done in the *ASD Specification*, then the allowable bending stress would be $0.66F_y$ as it is in the 1989 *ASD Specification* and has been since 1961. And a designer could certainly continue to use that value.

F _y = 5	0 ksi		Table 4-2.											
P _n = F	_{cr} A _g		W-Shapes											
$\Omega_c = 1.67$ Available Strength in Axial														
$\phi_c = 0.5$	90							5						
						n/≧≝c ₽ (,						
Sh	200				Ψ	c'n (/ /						
Wt/ft		120		109		99 ^{††}		4X 90 ^{††}		82		74		
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
	0	1059	1588	960	1440	875	1313	798	1196	720	1080	654	982	
ur _y	6	1031	1546	932	1398	847	1271	776	1165	677	1015	615	922	
	7	1024	1535	925	1387	840	1260	762	1144	662	993	601	902	
	8	995	1514 1493	918 904	1376	833 819	1249	755 748	1133	645 627	968 940	586 570	879 854	
ratic	10	981	1472	889	1334	812	1218	734	1101	607	911	551	827	
gyı	11	967	1451	875	1313	798	1196	727	1091	585		532	797	
s of	12	953	1429	861	1292	784	1175	713	19		84	511	767	
ndiu	13	932	1398	847	1271	769	1154	698		⁷³	09	490	735	
stre	14	896	1300	812	1239	734	01	3	3		735	407	667	
leas	16	875	1313	791	1186	720	a	64	979	464	697	422	633	
ę	10	854	1281	769	1154	700	22	037	955	439	659	399	598	
ect	18	833	1249	48	2	681		620	930	414	620	376	563	
esp	19	805	1207	23	10	662	993	602	903	388	582	352	528	
th	20	784	2.2			643	965	584	8//	363	544	330	494	
, wi	22	7	11	666	998	603	904	548	822	314	471	286	429	
- (Ħ	24	58 25	02	620	931	562	843	510	766	268	402	244	365	
K	20		881	530	795	479	719	435	652	197	295	179	268	
tive length	30	538	807	486	728	438	658	398	597	172	257	156	234	
	32	490	735	443	664	399	598	361	542	151	227	137	205	
	34	443	665	400	600	361	541	327	490	133	200	121	182	
ffec	36	399	598	359	539	323	485	293	439	119	179	108	162	
ш	38 40	358 323	537 484	323 291	484 436	290 262	435 393	263 237	394 356	107 96 7	160 145	97.4 87.5	146 131	
	P	020	-0-1	201	400	202	000	201	000	00.7	140	07.0	101	
Properties														
P _{wo} , kips		151	227	128	192	111	167	96	144	123	185	103	155	
Р _{wi} , кips/in.		19.7	29.5	17.5	26.3	16.2	24.3	14.7	22.0	17.0	25.5	15.0	22.5	
P _{wb} , kips		331	497	233	349	184	275	137	205	213	320	226	339	
г _{fb} ,кips		170 204		147 220		121 181		100 150		145 218		104 <u>231</u> 8 76		
L _p , n L _r , ft		46.2		43.2		40.6		38.4		8.76 29.5		0.76 27.9		
A_{g} , in. ²		35.3		32.0		29.1		26.5		24.0		21.8		
I_{x} , in. ⁴		1380		1240		1110		999		881		795		
I_y , in. ⁴		495		447		402		362		148		134		
r _y , in.		3.74		3.73		3.71		3.70		2.48		2.48		
Ratio r _x /r _y		1.67		1.67		1.66		1.66		2.44		2.44		
P _{ex} (KL ²)/10 ⁴		39500		35500		31800		28600		25200		22800		
P _{ey} (K	L ²)/10 ⁴	14200		12800		11500		10400		4240		3840		
tt Elangos d	ro non com	act: Soc	AISC Sn	ocificatio	ification Section		1 B4				JJ			

Example of column table for the next manual, using draft provisions of the 2005 Specification. ASD design values will be shaded in green, and LRFD design values will be shown in blue. Member design tables are for $F_v = 50$ ksi.

Expanded Scope

The new unified format of the 2005 specification is the most visible change, incorporating both ASD and LRFD methods into one specification. The document begins with a substantial revision: an expanded scope in Chapter A will affect the applicability of the entire document by stating that the specification sets forth criteria for the "design of structural steel buildings and other structures." Chapter B provides a roadmap to help the user locate specific provisions in the specification. Chapter C handles the stability provisions of the overall structure, and incorporates new analysis provisions, including a direct-analysis method using notional loads and K = 1.

Member Design

Chapters D through I cover memberdesign provisions, and Chapter J covers connection-design provisions. Chapter D, "Design of Members for Tension," will include simplified shear-lag criteria for determining the effective area in a new tabulated format. The other remaining member-design chapters contain several revisions. Chapter F, "Design of Members for Flexure," has expanded in length with the addition of hollow structural section and single-angle provisions. However, it is helpful to note that the user need not go past Section F2 if designing the typical, compact wideflange shape.

Other notable revisions to member design are in Chapter I, where "Design of Composite Members" has been reorganized and updated extensively to reflect recent research, higher-strength materials, and consistency with ACI 318. The usual bolt, weld, and general connectiondesign provisions remain in Chapter J, and a new Chapter K addresses only HSS and box-member connection-design provisions. The concentrated-force provisions have been relocated to Chapter J. Some revisions in Chapter J include new block shear rupture criteria, improved details for weld-access holes, and revised slip-strength calculations for slip-critical connections.

User Notes Added

Other important features of the new specification are found in the appendices and "User Notes." The appendices are intended to contain less frequently used criteria, including "Design for Fatigue, Evaluation and Repair," and a new appendix on "Structural Design for Fire Conditions." The latter provides a more performance-oriented approach to design for fire than the traditional prescriptive methods used in the building code. The "User Notes" are brief commentaries interspersed throughout the text that supplement the historical "Commentary" that follows the specification. They provide concise, practical guidance to assist the user when applying the provisions.

Availability

The final, ANSI-accredited AISC *Spec-ification for Structural Steel Buildings* will be introduced in 2005 in conjunction with a completely updated *Manual of Steel Construction*. The *Manual* will provide the discussion, tables, and design aids that the user will need to make the most of the new specification. *****

Cynthia Duncan is AISC's Director of Specifications.