steel quiz

This month's Steel Quiz takes a look at quality control, quality assurance and AISC 360 Chapter N.

Complete the free body diagrams provided below using the given brace configuration, applied forces and the assumed internal force distribution. Solve for each unknown force and properly indicate the direction of each force.

Hint: Forces can be equal to 0.

Configuration

Assumed Force Distribution

TURN PAGE FOR ANSWERS

steel quiz **ANSWERS**

Solution

$V_2 = V_1 / 2$		V ₂ = 20 kip
$\Sigma F_x = 0 = 40 \text{ kip} - V_2 - P_4$		$P_4 = 20 \text{ kip}$
Resolve M_1 into force couple P_2	$P_2 = M_1 / 22''$	P ₂ = 16.1 kip
$\Sigma F_{v} = 0 = V_4 - P_2$		V ₄ = 16.1 kip
$\Sigma \dot{M_{B}} = 0 = P_{2} \times 11'' - V_{2} \times 8.85'' - M_{4}$		$M_4 = 0$ kip-in
$\Sigma F_{x} = 0 = P_{4} - V_{2} - P_{5}$		$P_5 = 0 \text{ kip}$
$\Sigma F_{v} = 0 = P_{2} + V_{3} - 28.3 \text{ kip} \times \sin 45^{\circ}$		V ₃ = 3.9 kip
$\Sigma F_x = 0 = 28.3 \times \cos 45^\circ - V_2 - P_3$		$P_3 = 0 \text{ kip}$
$\Sigma M_c = 0 = P_2 \times (11'' - 8.85'') - V_3 \times 8.85'' -$	- M ₃	$M_3 = 0 \text{ kip}$

Note that other assumed distributions of the forces are possible vs. what was given as long as statics is satisfied and the forces are consistent with the intended performance of the connection and the assumptions used in the structural analysis.

Free Body Diagrams

Everyone is welcome to submit questions and answers for Steel Quiz. If you are interested in submitting one question or an entire quiz, contact AISC's Steel Solutions Center at 866.ASK.AISC or at solutions@aisc.org.