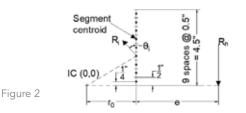

steel quiz This month's Steel Quiz is based on guidance and equations provided on eccentrically loaded weld groups in Part 8 of the 15th Edition AISC Steel Construction Manual.

Refer to Figure 1. Given that weld size, *a*, is 5/16 in. and F_{EXX} is 70 ksi, solve for weld available strength, ϕR_{n_i} using:

- 1 Table 8-4
- 2 Instantaneous center of rotation method

- 3 Elastic method
- 4 Plastic method

TURN PAGE FOR THE ANSWERS


steel quiz ANSWERS

Using Table 8-4. k = 0, because the force applied is out-ofplane with regard to the cross-sectional plane of the plate. From Table 8-4:

```
C = 1.84
```

 $\phi R_n = \phi CC_1 DI = (0.75)(1.84)(1.0)(5)(9) = 62.1$ kips

2 Using the instantaneous center of rotation method. Break half of the weld length into equal segments (see Figure 2).

Select a trial location for the instantaneous center of rotation, r_0 . Compute coordinates of the centroids of the segments and their angles. Compute the deformations Δ_{mi} and Δ_{ui} using the following equations:

$$\begin{split} \Delta_{mi} &= 0.209 \left(\theta_i + 2\right)^{-0.32} w \\ \Delta_{ui} &= 1.087 \left(\theta_i + 6\right)^{-0.65} w \leq 0.17 w \end{split}$$

where θ_i is the segment angle in degrees and w is the weld size in in.

Compute Δ_i as follows:

$$\Delta_i = r_i \frac{\Delta_{ucr}}{r_{cri}} = r_i \left(0.0046 \right)$$

Compute R_n , the resistance of each segment:

$R_{i} = 0.60 F_{EXX} t_{e} I_{w} \left(1.0 + 0.50 \sin^{1.5} \theta_{i} \right) \left[\frac{\Delta_{i}}{\Delta_{mi}} \left(1.9 - 0.9 \frac{\Delta_{i}}{\Delta_{mi}} \right) \right]^{0.1}$									
Vertical Segments	Length I _w (in.)	<i>X</i> (in.)		<i>r_i</i> (in.)	<i>R</i> i (kip)	(<i>R_i</i>) _x (kip)	(<i>R_i</i>) _y (kip)	<i>R_ir_i</i> (kip-in.)	
1	0.5	0.82	4.25	4.329	6.87	6.75	1.31	29.75	
2	0.5	0.82	3.75	3.839	6.89	6.72	1.48	26.44	
3	0.5	0.82	3.25	3.353	6.82	6.61	1.68	22.86	
4	0.5	0.82	2.75	2.871	6.66	6.38	1.91	19.13	
5	0.5	0.82	2.25	2.396	6.41	6.02	2.20	15.35	
6	0.5	0.82	1.75	1.934	6.02	5.44	2.56	11.64	
7	0.5	0.82	1.25	1.497	5.44	4.54	2.99	8.14	
8	0.5	0.82	0.75	1.114	4.56	3.07	3.38	5.09	
9	0.5	0.82	0.25	0.861	3.34	0.97	3.20	2.88	
					$\Sigma =$	46.51	20.71	141.27	

Check rotational and force equilibrium until both values become the same ($r_0 = 0.824$ in.).

Rotational equilibrium:

$$R_n = \frac{2(\sum R_i r_i)}{e + r_0} = \frac{2(141.3)}{6.824} = 41.4$$
 kips

Force equilibrium:

$$R_n = 2\sum (R_i)_y = 41.4$$
 kips

Finally:

$$\phi R_n = (0.75)(2 \text{ weld lines}) \times 41.4 \text{ kips} = 62.1 \text{ kips}$$

3 Using the elastic method.

The moment of inertia of the weld is:

$$I_x = 2\left(\frac{9^3}{12}\right) = 121.50 \text{ in.}^3$$

Solve for the welding strength from the following:

$$\sqrt{\left(\frac{R_n}{2I}\right)^2 + \left(\frac{R_n ec}{I_p}\right)^2} = \left(0.707 \times \frac{5}{16} \text{ in.}\right) 0.6(70 \text{ ksi})$$
$$R_n = 40.5 \text{ kips} \rightarrow \phi R_n = 30.4 \text{ kips}$$

Using the plastic method.

For one weld:

$$\begin{aligned} f_{w} &= \sqrt{f_{v}^{2} + (f_{a} + f_{b})^{2}} \\ f_{v} &= \frac{R_{n}}{l}, \ f_{a} = 0, \ f_{b} = \frac{4M}{l^{2}} = \frac{4R_{n}e}{l^{2}} \\ f_{w} &= \left(\frac{5}{16} \text{ in.}\right)(0.707)(0.6)(70 \text{ ksi}) \end{aligned}$$

For two welds:

 $R_n = 58.7 \text{ kips} \rightarrow \phi R_n = 44.0 \text{ kips}$

Notes: The Steel Quiz submitted by Hamza Sekkak did not account for the directional strength increase when applying the plastic method. Section J2.4.(b) of the AISC *Specification for Structural Steel Buildings* (ANSI/AISC 360) states: "For fillet welds, the available strength is permitted to be determined accounting for a directional strength increase of $(1.0 + 0.50 \sin^{1.5}\theta)$ if strain compatibility of the various weld elements is considered." Though not explicitly addressed in the use of the plastic method, strain compatibility will likely not be a problem for the condition shown. This is a matter of engineering judgment. If the directional strength increase is to be included, it can be done as follows:

$$\theta = \operatorname{atan}\left(\frac{f_b}{f_v}\right) = \operatorname{atan}\left(\frac{4e}{l}\right) = \operatorname{atan}\left(\frac{4(6)}{9}\right) = 69.4^{\circ}$$
$$\left[1.0 + 0.50\sin^{1.5}(69.4^{\circ})\right] = 1.4$$

Accounting for the directional strength increase $\phi R_n = 63.9$ kips, this is within 3% of the strength predicted by the instantaneous center of rotation method, which explicitly considers strain compatibility of the various weld elements.

-Larry Muir, PE, AISC Director of Technical Assistance

If you are interested in submitting one question or an entire quiz, contact AISC's Steel Solutions Center at 866.ASK.AISC or **solutions@aisc.org**.